Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human gut microbes impact host serum metabolome and insulin sensitivity

Abstract

Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the workflow integrating human phenotypes, fasting serum metabolome, gut microbiome data and mouse feeding experiments.
Figure 2: Association map of the three-tiered analyses integrating the phenome, the gut microbiome and the fasting serum metabolome in 277 non-diabetic individuals with available metagenomic data.
Figure 3: The ratio between the gut microbiome potential for BCAA biosynthesis and inward transport is linked to fasting serum BCAA levels and IR in humans and can be attributed to a few driver species, including P. copri that induces an aggravation of glucose intolerance in mice concomitantly with elevated serum BCAA levels.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

Data deposits

Raw nucleotide data can be found for all samples used in the study in the European Nucelotide Archive (accession numbers: ERP003612, ERP004605, MetaHIT samples; ERP014713, 16S rDNA from mouse experiment). The metabolomics data has been deposited in the MetaboLights database (http://www.ebi.ac.uk/metabolights/) under accession number: MTBLS351.

References

  1. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. Holmes, E., Li, J. V., Marchesi, J. R. & Nicholson, J. K. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 16, 559–564 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, C. C. et al. Branched-chain amino acids and insulin metabolism: The Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care 39, 582–588 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rhee, E. P. et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Invest. 121, 1402–1411 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kotronen, A. et al. Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia 52, 684–690 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. Floegel, A. et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62, 639–648 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roberts, L. D., Koulman, A. & Griffin, J. L. Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome. Lancet Diabetes Endocrinol. 2, 65–75 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985)

    Article  CAS  PubMed  Google Scholar 

  15. Alberti, K. G. M. M., Zimmet, P. & Shaw, J. Metabolic syndrome – a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet. Med. 23, 469–480 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Aura, A. M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 7, 407–429 (2008)

    Article  CAS  Google Scholar 

  17. Velagapudi, V. R. et al. The gut microbiota modulates host energy and lipid metabolism in mice. J. Lipid Res. 51, 1101–1112 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tso, S. C. et al. Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain α-ketoacid dehydrogenase kinase. Proc. Natl Acad. Sci. USA 110, 9728–9733 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Forouhi, N. G. et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2, 810–818 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roberts, L. D., Virtue, S., Vidal-Puig, A., Nicholls, A. W. & Griffin, J. L. Metabolic phenotyping of a model of adipocyte differentiation. Physiol. Genomics 39, 109–119 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Collins, J. M. et al. De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J. Lipid Res. 52, 1683–1692 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Summers, S. A. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res. 45, 42–72 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Raichur, S. et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 687–695 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. Watson, E. et al. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156, 759–770 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dewulf, E. M. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62, 1112–1121 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Charon, N. W., Johnson, R. C. & Peterson, D. Amino acid biosynthesis in the spirochete Leptospira: evidence for a novel pathway of isoleucine biosynthesis. J. Bacteriol. 117, 203–211 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Umbarger, H. E. Amino acid biosynthesis and its regulation. Annu. Rev. Biochem. 47, 532–606 (1978)

    Article  CAS  PubMed  Google Scholar 

  34. Shin, S.-Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heimesaat, M. M. et al. Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii. J. Immunol. 177, 8785–8795 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. Dillon, S. M. et al. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol. 9, 24–37 (2016)

    Article  CAS  PubMed  Google Scholar 

  39. Kovatcheva-Datchary, P. et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22, 971–982 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. Laferrère, B. et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl. Med. 3, 80re2 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lynch, C. J. & Adams, S. H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 10, 723–736 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jang, C. et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22, 421–426 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herman, M. A., She, P., Peroni, O. D., Lynch, C. J. & Kahn, B. B. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 285, 11348–11356 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pietiläinen, K. H. et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 5, e51 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shin, A. C. et al. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metab. 20, 898–909 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jørgensen, T. et al. A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99. Eur. J. Cardiovasc. Prev. Rehabil. 10, 377–386 (2003)

    Article  PubMed  Google Scholar 

  47. Castillo, S., Mattila, I., Miettinen, J., Orešicˇ, M. & Hyötyläinen, T. Data analysis tool for comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal. Chem. 83, 3058–3067 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. Kopka, J. et al. GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21, 1635–1638 (2005)

    Article  CAS  PubMed  Google Scholar 

  49. Nygren, H., Seppänen-Laakso, T., Castillo, S., Hyötyläinen, T. & Orešicˇ, M. Liquid chromatography-mass spectrometry (LC-MS)-based lipidomics for studies of body fluids and tissues. Methods Mol. Biol. 708, 247–257 (2011)

    Article  CAS  PubMed  Google Scholar 

  50. Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Langfelder, P. & Horvath, S. Fast R functions for robust correlations and hierarchical clustering. J. Stat. Softw. 46, i11 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mosteller, F. & Tukey, J. W. Data Analysis and Regression. A Second Course in Statistics, 203–209 (Addison–Wesley, 1977)

  54. Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008)

    Article  CAS  PubMed  Google Scholar 

  55. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014)

    Article  CAS  PubMed  Google Scholar 

  56. Kultima, J. R. et al. MOCAT: a metagenomics assembly and gene prediction toolkit. PLoS One 7, e47656 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006)

    Article  CAS  PubMed  Google Scholar 

  58. Arumugam, M., Harrington, E. D., Foerstner, K. U., Raes, J. & Bork, P. SmashCommunity: a metagenomic annotation and analysis tool. Bioinformatics 26, 2977–2978 (2010)

    Article  CAS  PubMed  Google Scholar 

  59. Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010)

    Article  CAS  PubMed  Google Scholar 

  64. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200–1202 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.3-3. https://cran.r-project.org/web/packages/vegan/index.html (2016)

  69. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2009)

  70. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2012)

  71. Whittaker, J. Graphical models in applied multivariate statistics. (John Wiley & Sons, 1990)

  72. Seongho, K. ppcor: Partial and semipartial (Part) correlation. R package version 1.0. https://cran.r-project.org/web/packages/ppcor/index.html (2012)

  73. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Paternoster, R., Brame, R., Mazerolle, P. & Piquero, A. Using the correct statistical test for the equality of regression coefficients. Criminology 36, 859–866 (1998)

    Article  Google Scholar 

  75. Lee, S., Chang, J. & Blackstone, C. FAM21 directs SNX27–retromer cargoes to the plasma membrane by preventing transport to the Golgi apparatus. Nat. Commun. 7, http://dx.doi.org/10.1038/ncomms10939 (2016)

Download references

Acknowledgements

The authors wish to thank S. Castillo, M. Sysi-Aho, A. Ruskeepää, U. Lahtinen, A. Forman, T. Lorentzen, B. Andreasen, G. J. Klavsen, M. J. Nielsen, B. Pedersen, M. T. F. Damgaard and L. B. Rosholm for technical assistance, D. R. Mende and J. R. Kultima for their help in data processing and tool provision, C. Ekstøm and S. Ditlevsen for statistical and mathematical assistance, respectively, and T. F. Toldsted and G. Lademann for management assistance. C. B. Newgard and A. Vaag are thanked for critical comments on our manuscript. The present study is initiated and funded by the European Community’s Seventh Framework Program (FP7/2007-2013): MetaHIT, grant agreement HEALTH-F4-2007-201052. Additional funding came from The Lundbeck Foundation Centre for Applied Medical Genomics in Personalized Disease Prediction, Prevention and Care (LuCamp, http://www.lucamp.org), Metagenopolis grant ANR-11-DPBS-0001 and FP7 METACARDIS HEALTH-F4-2012-305312. J.R., S.V.-S. and G.F. are funded by the Rega institute for Medical Research, KU Leuven, the Agency for Innovation by Science and Technology (IWT), Marie Curie Actions FP7 People COFUND - Proposal 267139 and the Fund for Scientific Research Flanders (FWO). M.O. is also supported by Academy of Finland (Centre of Excellence in Molecular Systems Immunology and Physiology Research, Decision No. 250114) and EU FP7 Project TORNADO (project 222720). F.H. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 600375. The Center for Biological Sequence Analysis and the Novo Nordisk Foundation Center for Basic Metabolic Research have in addition received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115317 (DIRECT), resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution. The Novo Nordisk Foundation Center for Protein Research received funding from the Novo Nordisk Foundation (grant agreement NNF14CC0001). The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (http://www.metabol.ku.dk).

Author information

Authors and Affiliations

Authors

Contributions

O.P., S.D.E. and P.B. devised the study. O.P., S.D.E., S.Bru. and H.B.N. designed the study protocol and supervised all parts of the project. H.B.N. and S.Bru. led the data integration, the bioinformatics analyses and did the primary interpretation of analytical outcomes in close collaboration with H.K.P. and V.G. H.K.P., V.G., B.A.H.J., T.Hy., E.P., D.P., S.S., F.H., K.F., J.B.H. and S.V.-S. performed data analyses. T.N., T.Ha. and O.P. composed the clinical protocol, carried out phenotyping of study participants including collection of biological samples and physiological data generation and interpretation. F.L. performed DNA extraction and J.D. supervised DNA extraction. J.W. supervised DNA sequencing and gene profiling. M.O., T.Hy., I.M., K.T. and P.P. performed profiling of serum metabolomics and serum lipidomics. B.A.H.J., K.K., J.B.H. and S.Bri. performed mouse experiments. H.B.N., H.K.P. and V.G. drafted the first versions of the paper with critical and substantial contributions from O.P., S.Bru., T.N., J.R., K.F., F.H., M.O., L.I.H., D.P., G.F., P.B. and S.D.E. All authors approved the final version. MetaHIT consortium members provided support and constructive criticism throughout MetaHIT research operations.

Corresponding authors

Correspondence to Søren Brunak, Matej Oresic, S. Dusko Ehrlich or Oluf Pedersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks J. Garrett, L. Groop, C. Lozupone, G. Siuzdak and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Distributions of continuous physiological traits for the 291 non-diabetic individuals, 75 type 2 diabetes patients and 75 matched non-diabetic controls.

An overview of the same traits is shown in Supplementary Table 1. The 75 non-diabetic controls are a subset of the 291 non-diabetic individuals matched to the type 2 diabetes patients by age, sex and BMI and used for comparative analyses.

Extended Data Figure 2 The number of metabolite clusters, species and microbiome functional modules significantly associated with HOMA-IR, HOMA-IRBMIadj, and metabolic syndrome.

ac, Venn diagrams resuming the number of serum metabolite clusters (a), species (b) and microbiome functional modules (c) that are associated with the three HOMA-IR, HOMA-IRBMIadj and metabolic syndrome phenotypes at FDR < 0.1. d, The number of microbiome functional modules associated with HOMA-IR, gene richness and HOMA-IRGeneRichness.adj. The metabolite cluster associations are based on all 291 non-diabetic individuals whereas the species and KEGG module associations were estimated on the 277 non-diabetic individuals with microbiome data. MetS, metabolic syndrome.

Extended Data Figure 3 Fine-grained correlation profile of fasting serum metabolite clusters and physiological traits in 291 non-diabetic individuals.

Spearman correlations between all fasting serum metabolite clusters (top panel, molecular lipids; bottom panel, polar metabolites) and clinical phenotypes. The metabolites in each panel are clustered by their correlation profile (see dendrogram). The colour represents positive (blue) or negative (red) correlations and FDRs are denoted: +, FDR < 0.1; *, FDR < 0.01; **, FDR < 0.001. The names of the 19 metabolite clusters making up the IR- and IS-metabotypes are highlighted with blue (IR-metabotype) and red (IS-metabotype), respectively.

Extended Data Figure 4 Fine-grained correlation profile of IR- and metabolic-syndrome-associated microbial species and physiological traits in 277 non-diabetic individuals.

Spearman correlations between continuous physiological traits and the 81 species significantly associated (FDR < 0.1) with HOMA-IR, HOMA-IRBMIadj or metabolic syndrome phenotypes (Extended Data Fig. 1). The species are clustered by their correlation profile. The colour represents positive (blue) or negative (red) correlations and FDRs are denoted: +, FDR < 0.1; *, FDR < 0.01; **, FDR < 0.001.

Extended Data Figure 5 Correlations between IR- and metabolic syndrome-associated microbial species and fasting serum metabolite clusters in 277 non-diabetic individuals.

Spearman correlations between species that were significantly associated (FDR < 0.1) with HOMA-IR, HOMA-IRBMIadj or metabolic syndrome phenotypes and the 19 metabolite clusters making up the IR- and IS-metabotypes. The colour represents positive (blue) or negative (red) correlations and FDRs are denoted: +, FDR < 0.1; *, FDR < 0.01; **, FDR < 0.001. The left sidebar represents positive (blue) or negative (red) correlations between the species and the indicated phenotypes (FDR < 0.1). MetS, metabolic syndrome.

Extended Data Figure 6 Abundances of P. copri and B. vulgatus anti-correlate and their combined abundance correlates with HOMA-IR in 277 non-diabetic individuals.

a, b, The abundances of T2DCAG00385: P. copri (orange) and T2DCAG00050: B. vulgatus (blue), shown for all non-diabetic individuals arranged by decreasing P. copri abundance and increasing B. vulgatus abundance (a), and arranged by total abundance of both species with HOMA-IR levels shown above (b).

Extended Data Figure 7 Correlations between microbial species and both HOMA-IR and the BCAA-containing metabolite cluster (M10) in 277 non-diabetic individuals.

a, b, Spearman correlations between species and both the BCAA-containing metabolite cluster (a, M10) and insulin resistance (b, HOMA-IR) in individuals with detectable abundances of the respective species. FDRs of 0.1 and 0.05 are denoted with dotted and dashed lines, respectively. Colour intensity represents mean species abundance in individuals where the species was observed.

Extended Data Figure 8 Microbial driver species for associations between microbiome functional modules and insulin resistance in 277 non-diabetic individuals.

The five most important microbial species driving the association between the indicated microbiome functional modules and insulin resistance (HOMA-IR) are shown (see Supplementary Table 9 for effect sizes). Each species is highlighted with a different colour. The left sidebar represents positive (blue) or negative (red) associations between the functional modules and the indicated phenotypes (FDR <0.1). MetS, metabolic syndrome.

Extended Data Figure 9 An in-depth view of the microbial BCAA biosynthesis pathway and BCAA inward transport system, illustrating the correlations between microbial KEGG orthologous gene groups and serum metabolites with human insulin resistance.

KEGG orthologous gene groups (squares) and metabolites (circles) are coloured by their Spearman correlation with HOMA-IR in the non-diabetic individuals (n = 277 for KEGG orthologous gene groups, n = 291 for metabolites), or coloured grey if no information was available. The network is adapted from KEGG pathway maps (pathways hsa00290 and hsa02010).

Extended Data Figure 10 Oral glucose tolerance test after two weeks of P. copri or sham gavaging and 16S rDNA amplicon sequencing of faecal samples from mice after three weeks of treatment with P.copri or sham.

a, Oral glucose tolerance test. The P. copri-gavaged mice (n = 12) had significantly higher serum glucose levels compared to sham-gavaged controls (n = 12, P = 0.02, Mann–Whitney U-test for AUC) after two weeks of the gavage challenge. Mean ± s.e.m. is depicted. Stars indicate significant differences at individual time points (repeated measurements two-way ANOVA): *P < 0.05; **P < 0.01. b, Plasma insulin was measured before and 15 min post glucose bolus, P = 0.80, Mann–Whitney U-test, bars represents mean ± s.e.m., n = 12. c, Microbiota taxa summary plots on family level after the two given time points, that is, pre high-fat diet (HFD) and post HFD plus gavage. HFD feeding significantly changed the microbial community (adonis P = 0.001) while bacterial gavaging had negligible effect. Data represent mean values. n = 12 per group (one sample from the sham group at time point −3 weeks did not go successfully through the 16S rDNA amplicon sequencing and is therefore represented by 11 samples). ‘Unclassified’ refers to reads that could not be classified to any taxonomy. ‘Other’ refers to reads that could not be classified at family level. d, P. copri changes in mouse faecal samples after P. copri gavaging as determined by quantitative PCR. Bars show the change in P. copri levels relative to before P. copri or sham challenge (bars represents mean ± s.e.m., n = 12, P = 0.0058, Mann–Whitney U-test).

Supplementary information

Supplementary Information

This file contains full legends for Supplementary Tables 1-17, Supplementary Results and Discussion and a list of additional MetaHIT consortium members. (PDF 531 kb)

Supplementary Data

This file contains Supplementary Tables 1-17 – see Supplementary Information document for full legends. (XLSX 647 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen, H., Gudmundsdottir, V., Nielsen, H. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016). https://doi.org/10.1038/nature18646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature18646

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing