Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A microbial perspective of human developmental biology

Subjects

Abstract

When most people think of human development, they tend to consider only human cells and organs. Yet there is another facet that involves human-associated microbial communities. A microbial perspective of human development provides opportunities to refine our definitions of healthy prenatal and postnatal growth and to develop innovative strategies for disease prevention and treatment. Given the dramatic changes in lifestyles and disease patterns that are occurring with globalization, we issue a call for the establishment of 'human microbial observatories' designed to examine microbial community development in birth cohorts representing populations with diverse anthropological characteristics, including those undergoing rapid change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oligosaccharides in human breast milk and strategies for their degradation by the infant microbiota.
Figure 2: Discovery pipeline for characterizing the functional properties of developing human microbial communities.

Similar content being viewed by others

References

  1. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  4. Gordon, J., Knowlton, N., Relman, D. A., Rohwer, F. & Youle, M. Superorganisms and holobionts. Microbe 8, 152–153 (2013).

    Google Scholar 

  5. Levison, M. E., Corman, L. C., Carrington, E. R. & Kaye, D. Quantitative microflora of the vagina. Am. J. Obstet. Gynecol. 127, 80–85 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108 (suppl. 1), 4680–4687 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Dareng, E. O. et al. Prevalent high-risk HPV infection and vaginal microbiota in Nigerian women. Epidemiol. Infect. 144, 123–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Koren, O. et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput. Biol. 9, e1002863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hillier, S. L. et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. N. Engl. J. Med. 333, 1737–1742 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Horner-Devine, M. C. & Bohannan, B. J. Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87, S100–S108 (2006).

    Article  PubMed  Google Scholar 

  11. Stowell, S. R. et al. Microbial glycan microarrays define key features of host–microbial interactions. Nature Chem. Biol. 10, 470–476 (2014).

    Article  CAS  Google Scholar 

  12. Romero, R. et al. The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome 2, 18 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Romero, R. et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. DiGiulio, D. B. et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl Acad. Sci. USA 112, 11060–11065 (2015). This study showed that the composition of the vaginal microbiota early in pregnancy may predict subsequent premature birth, which raises questions about how this community of microbes shapes maternal health and pregnancy outcomes.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aagaard, K. et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 7, e36466 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson, C. S. Nutritionally beneficial cultural practices. World Rev. Nutr. Diet. 45, 68–96 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Bisanz, J. E. et al. Microbiota at multiple body sites during pregnancy in a rural Tanzanian population and effects of moringa-supplemented probiotic yogurt. Appl. Environ. Microbiol. 81, 4965–4975 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. MacIntyre, D. A. et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci. Rep. 5, 8988 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, Y. E. et al. Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women. Microb. Ecol. 69, 407–414 (2015).

    Article  PubMed  Google Scholar 

  20. Burke, B. S. & Stevenson, S. S. Nutrition studies during pregnancy; relation of maternal nutrition to condition of infant at birth; study of siblings. J. Nutr. 38, 453–467 (1949).

    Article  CAS  PubMed  Google Scholar 

  21. Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, B. et al. Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS ONE 7, e37919 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duran-Pinedo, A. E. et al. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 8, 1659–1672 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Siqueira, F. M. et al. Intrauterine growth restriction, low birth weight, and preterm birth: adverse pregnancy outcomes and their association with maternal periodontitis. J. Periodontol. 78, 2266–2276 (2007).

    Article  PubMed  Google Scholar 

  25. DiGiulio, D. B. et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS ONE 3, e3056 (2008).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  26. DiGiulio, D. B. et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am. J. Reprod. Immunol. 64, 38–57 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Han, Y. W. et al. Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth. J. Clin. Microbiol. 44, 1475–1483 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han, Y. W., Shen, T., Chung, P., Buhimschi, I. A. & Buhimschi, C. S. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J. Clin. Microbiol. 47, 38–47 (2009).

    Article  PubMed  CAS  Google Scholar 

  29. Swati, P., Thomas, B., Vahab, S. A., Kapaettu, S. & Kushtagi, P. Simultaneous detection of periodontal pathogens in subgingival plaque and placenta of women with hypertension in pregnancy. Arch. Gynecol. Obstet. 285, 613–619 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Costalonga, M. & Herzberg, M. C. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol. Lett. 162, 22–38 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Teng, F. et al. Prediction of early childhood caries via spatial–temporal variations of oral microbiota. Cell Host Microbe 18, 296–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Kustner, O. Beitrag zur Lehre von der puerperalen Infection der Neugeborenen. Arch. Gynakol. 11, 256–263 (1877).

    Article  Google Scholar 

  33. Harris, J. W. & Brown, J. H. The bacterial content of the uterus at cesarean section. Am. J. Obstet. Gynecol. 13, 133–143 (1927).

    Article  Google Scholar 

  34. Benirschke, K. Routes and types of infection in the fetus and the newborn. AMA J. Dis. Child. 99, 714–721 (1960).

    CAS  PubMed  Google Scholar 

  35. Verstraelen, H. et al. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1–2 region of the 16S rRNA gene. PeerJ 4, e1602 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mitchell, C. M. et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am. J. Obstet. Gynecol. 212, 611.e1–611.e9 (2015).

    Article  Google Scholar 

  37. Stout, M. J. et al. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am. J. Obstet. Gynecol. 208, 226.e1–226.e7 (2013).

    Article  Google Scholar 

  38. Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bhola, K. et al. Placental cultures in the era of peripartum antibiotic use. Aust. N. Z. J. Obstet. Gynaecol. 48, 179–184 (2008).

    Article  PubMed  Google Scholar 

  40. Kliman, H. J. Comment on “The placenta harbors a unique microbiome”. Sci. Transl. Med. 6, 254le4 (2014).

    Article  PubMed  Google Scholar 

  41. Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Prince, A. L. et al. The placental microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am. J. Obstet. Gynecol. 214, 627.e1–627.e16 (2016).

    Article  Google Scholar 

  43. Kim, M. J. et al. Widespread microbial invasion of the chorioamniotic membranes is a consequence and not a cause of intraamniotic infection. Lab. Invest. 89, 924–936 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hansen, R. et al. First-pass meconium samples from healthy term vaginally-delivered neonates: an analysis of the microbiota. PLoS ONE 10, e0133320 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ardissone, A. N. et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS ONE 9, e90784 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Romero, R. et al. The role of infection in preterm labour and delivery. Paediatr. Perinat. Epidemiol. 15 (suppl. 2), 41–56 (2001).

    Article  PubMed  Google Scholar 

  47. Bearfield, C., Davenport, E. S., Sivapathasundaram, V. & Allaker, R. P. Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG 109, 527–533 (2002).

    Article  PubMed  Google Scholar 

  48. Menon, R., Peltier, M. R., Eckardt, J. & Fortunato, S. J. Diversity in cytokine response to bacteria associated with preterm birth by fetal membranes. Am. J. Obstet. Gynecol. 201, 306.e1–306.e6 (2009).

    Article  CAS  Google Scholar 

  49. Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016). A germ-free mouse model of transient microbial colonization demonstrates that exposure of the mother to microbes during pregnancy shapes immunological development and function in the neonate.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Muglia, L. J. & Katz, M. The enigma of spontaneous preterm birth. N. Engl. J. Med. 362, 529–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. McGuire, M. K. & McGuire, M. A. Human milk: mother nature's prototypical probiotic food? Adv. Nutr. 6, 112–123 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wu, S., Tao, N., German, J. B., Grimm, R. & Lebrilla, C. B. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9, 4138–4151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, S., Grimm, R., German, J. B. & Lebrilla, C. B. Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome Res. 10, 856–868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kunz, C. & Rudloff, S. Biological functions of oligosaccharides in human milk. Acta Paediatr. 82, 903–912 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Ninonuevo, M. R. et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471–7480 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Totten, S. M. et al. Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. J. Proteome Res. 11, 6124–6133 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22, 1147–1162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thurl, S. et al. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br. J. Nutr. 104, 1261–1271 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Totten, S. M. et al. Rapid-throughput glycomics applied to human milk oligosaccharide profiling for large human studies. Anal. Bioanal. Chem. 406, 7925–7935 (2014). This paper highlights nanoflow liquid chromatography mass spectrometry, a method that allows the rapid and reproducible detection of HMOs in low-volume biological samples, enabling large-scale clinical studies.

    Article  CAS  PubMed  Google Scholar 

  61. Coppa, G. V. et al. Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics 91, 637–641 (1993).

    CAS  PubMed  Google Scholar 

  62. Niñonuevo, M. R. et al. Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry. J. Agric. Food Chem. 56, 618–626 (2008).

    Article  PubMed  CAS  Google Scholar 

  63. Chaturvedi, P. et al. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology 11, 365–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. De Leoz, M. L. et al. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J. Proteome Res. 11, 4662–4672 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Charbonneau, M. R. et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164, 859–871 (2016). Gnotobiotic mouse and piglet models were used to show that sialylated milk oligosaccharides play a causal, microbiota-dependent role in lean body-mass gain, bone growth and metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gal, B. et al. Development changes in UDP-N-acetylglucosamine 2-epimerase activity of rat and guinea-pig liver. Comp. Biochem. Physiol. B 108, 13–15 (1997).

    Article  Google Scholar 

  67. Wang, B. Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr. 29, 177–222 (2009).

    Article  PubMed  Google Scholar 

  68. Wang, B. & Brand-Miller, J. The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr. 57, 1351–1369 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, B. et al. Dietary sialic acid supplementation improves learning and memory in piglets. Am. J. Clin. Nutr. 85, 561–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Yonekawa, T. et al. Sialyllactose ameliorates myopathic phenotypes in symptomatic GNE myopathy model mice. Brain 137, 2670–2679 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chen, X. Human milk oligosaccharides (HMOS): structure, function, and enzyme-catalyzed synthesis. Adv. Carbohydr. Chem. Biochem. 72, 113–190 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Aldredge, D. L. et al. Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures. Glycobiology 23, 664–676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sundekilde, U. K. et al. Natural variability in bovine milk oligosaccharides from Danish Jersey and Holstein-Friesian breeds. J. Agric. Food Chem. 60, 6188–6196 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Muoio, D. M. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 159, 1253–1262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z. & Dominguez-Bello, M. G. The infant microbiome development: mom matters. Trends Mol. Med. 21, 109–117 (2015).

    Article  PubMed  Google Scholar 

  76. Lewis, Z. T. et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3, 13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Huda, M. N. et al. Stool microbiota and vaccine responses of infants. Pediatrics 134, e362–e372 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014). This study used a machine-learning approach to define normal microbiota development in Bangladeshi infants and children and revealed a persistent defect in microbiota development in children that exhibit undernutrition.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Sugahara, H., Odamaki, T., Hashikura, N., Abe, F. & Xiao, J. Z. Differences in folate production by bifidobacteria of different origins. Biosci. Microbiota Food Health 34, 87–93 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garrido, D., Dallas, D. C. & Mills, D. A. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology 159, 649–664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Garrido, D. et al. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci. Rep. 5, 13517 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  83. Marcobal, A. et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10, 507–514 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De Leoz, M. L. et al. Human milk glycomics and gut microbial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. J. Proteome Res. 14, 491–502 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Frese, S. A. & Mills, D. A. Should infants cry over spilled milk? Fecal glycomics as an indicator of a healthy infant gut microbiome. J. Pediatr. Gastroenterol. Nutr. 60, 695 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Frese, S. A., Parker, K., Calvert, C. C. & Mills, D. A. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3, 28 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351, aad3311 (2016).

    Article  PubMed  CAS  Google Scholar 

  90. Schwarzer, M. et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351, 854–857 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Kau, A. L. et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl. Med. 7, 276ra24 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Planer, J. D et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534, 263–266 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dogra, S. et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio 6, e02419-14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arrieta, M. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 7, 307ra152 (2015).

    Article  PubMed  CAS  Google Scholar 

  97. Goyal, M. S., Venkatesh, S., Milbrandt, J., Gordon, J. I. & Raichle, M. E. Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development. Proc. Natl Acad. Sci. USA 112, 14105–14112 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Levine, M. M., Kotloff, K. L., Nataro, J. P. & Muhsen, K. The Global Enteric Multicenter Study (GEMS): impetus, rationale, and genesis. Clin. Infect. Dis. 55 (suppl. 4), S215–S224 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. MAL-ED Network Investigators. The MAL-ED study: a multinational and multidisciplinary approach to understand the relationship between enteric pathogens, malnutrition, gut physiology, physical growth, cognitive development, and immune responses in infants and children up to 2 years of age in resource-poor environments. Clin. Infect. Dis. 59 (suppl. 4), S193–S206 (2014). This paper describes a large, multi-site birth cohort study that includes an effort to serially sample microbial communities in infants to identify correlations between the composition and the development of the microbiota, postnatal growth phenotypes and other facets of health.

  100. Ngure, F. M. et al. Water, sanitation, and hygiene (WASH), environmental enteropathy, nutrition, and early child development: making the links. Ann. NY Acad. Sci. 1308, 118–128 (2014).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

Work cited from the authors' laboratories was supported in part by grants from the US National Institutes of Health (DK30292, HD061923, AT007079 and AT008759), the Bill & Melinda Gates Foundation, the March of Dimes Foundation and the Thomas C. and Joan M. Merigan Endowment at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey I. Gordon.

Ethics declarations

Competing interests

J.I.G. is co-founder of Matatu, a company that is characterizing the role of diet-by-microbiota interactions in animal health. On completion of his PhD studies, M.R.C. joined Matatu as a research scientist. C.B.L and D.A.M. are co-founders of Evolve Biosystems, a company that is focused on the diet-based manipulation of the gut microbiota. D.A.R. is a member of the scientific advisory board of Seres Health. L.V.B and D.B.D. declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com.reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charbonneau, M., Blanton, L., DiGiulio, D. et al. A microbial perspective of human developmental biology. Nature 535, 48–55 (2016). https://doi.org/10.1038/nature18845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature18845

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology