Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lytic to temperate switching of viral communities

A Corrigendum to this article was published on 24 August 2016

This article has been updated

Abstract

Microbial viruses can control host abundances via density-dependent lytic predator–prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus ‘more microbes, fewer viruses’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Virus-like particle (VLP) relative abundance declines with increasing host density despite lower microbial diversity and similar host sensitivity to infection, contrary to predictions of lytic models.
Figure 2: The relative decline in virus-like particles (VLPs) with increasing host density is common in disparate environmental systems.
Figure 3: Density dependence does not drive viral predation.
Figure 4: Temperate features in viromes increase with host density.

Similar content being viewed by others

Accession codes

Data deposits

The viromes and microbiomes used in this paper are accessible at MG-RAST (http://metagenomics.anl.gov/) under the Piggyback-the-Winner project. Virome accession numbers: 4683670.3, 4683674.3, 4683677.3, 4683680.3, 4683683.3, 4683684.3, 4683686.3, 4683690.3, 4683702.3, 4683703.3, 4683704.3, 4683706.3, 4683712.3, 4683720.3, 4683739.3, 4683744.3, 4683745.3, 4683746.3, 4683747.3, 4683731.3, 4683733.3, 4683734.3, 4683718.3, 4684617.3. Microbiome accession numbers: 4683666.3, 4683667.3, 4683668.3, 4683669.3, 4683671.3, 4683672.3, 4683673.3, 4683675.3, 4683676.3, 4683678.3, 4683679.3, 4683681.3, 4683682.3, 4683685.3, 4683687.3, 4683688.3, 4683689.3, 4683691.3, 4683692.3, 4683693.3, 4683694.3, 4683695.3, 4683696.3, 4683697.3, 4683698.3, 4683699.3, 4683700.3, 4683701.3, 4683705.3, 4683707.3, 4683708.3, 4683709.3, 4683710.3, 4683711.3, 4683713.3, 4683714.3, 4683715.3, 4683716.3, 4683717.3, 4683719.3, 4683721.3, 4683722.3, 4683723.3, 4683724.3, 4683725.3, 4683726.3, 4683727.3, 4683728.3, 4683729.3, 4683732.3, 4683735.3, 4683736.3, 4683737.3, 4683738.3, 4683740.3, 4683741.3, 4683742.3, 4683743.3, 4683748.3, 4683749.3, 4683750.3, 4683751.3, 4683752.3, 4683753.3, 4683754.3, 4684616.3.

Change history

References

  1. Suttle, C. A. Marine viruses — major players in the global ecosystem. Nature Rev. Microbiol. 5, 801–812 (2007)

    CAS  Google Scholar 

  2. Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990)

    ADS  Google Scholar 

  3. Wilcox, R. M. & Fuhrman, J. A. Bacterial viruses in coastal seawater: lytic rather than lysogenic production. Mar. Ecol. Ser . 114, 35–45 (1994)

    Google Scholar 

  4. Payet, J. & Suttle, C. A. To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status. Limnol. Oceanogr. 58, 465–474 (2013)

    ADS  Google Scholar 

  5. Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Thingstad, T. F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45, 1320–1328 (2000)

    ADS  Google Scholar 

  7. Rodriguez-Brito, B. et al. Viral and microbial community dynamics in four aquatic environments. ISME J. 4, 739–751 (2010)

    PubMed  Google Scholar 

  8. Weitz, J. S. & Dushoff, J. Alternative stable states in host–phage dynamics. Theor. Ecol . 1, 13–19 (2008)

    Google Scholar 

  9. Thingstad, T. F., Våge, S., Storesund, J. E., Sandaa, R.-A. & Giske, J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc. Natl Acad. Sci. USA 111, 7813–7818 (2014)

    ADS  CAS  PubMed  Google Scholar 

  10. Weinbauer, M. G. & Höfle, M. G. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl. Environ. Microbiol. 64, 431–438 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993)

    ADS  Google Scholar 

  12. Evans, C. & Brussaard, C. P. D. Viral lysis and microzooplankton grazing of phytoplankton throughout the Southern Ocean. Limnol. Oceanogr. 57, 1826–1837 (2012)

    ADS  Google Scholar 

  13. Needham, D. M. et al. Short-term observations of marine bacterial and viral communities: patterns, connections and resilience. ISME J. 7, 1274–1285 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang, S. C. & Paul, J. H. Significance of lysogeny in the marine environment: studies with isolates and a model of lysogenic phage production. Microb. Ecol. 35, 235–243 (1998)

    CAS  PubMed  Google Scholar 

  15. Paul, J. H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2, 579–589 (2008)

    CAS  PubMed  Google Scholar 

  16. Paul, J. H. & Weinbauer, M. Detection of lysogeny in marine environments. Man. Aquat. Viral Ecol . 4, 30–33 (2010)

    Google Scholar 

  17. Maurice, C. F., Bouvier, C., de Wit, R. & Bouvier, T. Linking the lytic and lysogenic bacteriophage cycles to environmental conditions, host physiology and their variability in coastal lagoons. Environ. Microbiol. 15, 2463–2475 (2013)

    CAS  PubMed  Google Scholar 

  18. Dinsdale, E. A. et al. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS One 3, e1584 (2008)

    ADS  PubMed  PubMed Central  Google Scholar 

  19. Smith, J. E. et al. Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol. Lett. 9, 835–845 (2006)

    PubMed  Google Scholar 

  20. Thurber, R. V. et al. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol. 11, 2148–2163 (2009)

    CAS  Google Scholar 

  21. Kelly, L. W. et al. Black reefs: iron-induced phase shifts on coral reefs. ISME J. 6, 638–649 (2012)

    CAS  PubMed  Google Scholar 

  22. McDole, T. et al. Assessing coral reefs on a Pacific-wide scale using the microbialization score. PLoS One 7, e43233 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barott, K. L. & Rohwer, F. L. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20, 621–628 (2012)

    CAS  PubMed  Google Scholar 

  24. Alongi, D. M. et al. Phytoplankton, bacterioplankton and virioplankton structure and function across the southern Great Barrier Reef shelf. J. Mar. Syst . 142, 25–39 (2015)

    Google Scholar 

  25. Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997)

    Google Scholar 

  26. Giovannoni, S., Temperton, B. & Zhao, Y. Giovannoni et al. reply. Nature 499, E4–E5 (2013)

    ADS  CAS  PubMed  Google Scholar 

  27. James, C. E. et al. Lytic activity by temperate phages of Pseudomonas aeruginosa in long-term cystic fibrosis chronic lung infections. ISME J. 9, 1391–1398 (2015)

    CAS  PubMed  Google Scholar 

  28. Muck, S. et al. Fracture zones in the Mid Atlantic Ridge lead to alterations in prokaryotic and viral parameters in deep-water masses. Front. Microbiol . 5, 264 (2014)

    PubMed  PubMed Central  Google Scholar 

  29. Bongiorni, L., Magagnini, M., Armeni, M., Noble, R. & Danovaro, R. Viral production, decay rates, and life strategies along a trophic gradient in the North Adriatic Sea. Appl. Environ. Microbiol. 71, 6644–6650 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Williamson, S. J., Houchin, L. A., McDaniel, L. & Paul, J. H. Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl. Environ. Microbiol. 68, 4307–4314 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hennes, K. P., Suttle, C. A. & Chan, A. M. Fluorescently labeled virus probes show that natural virus populations can control the structure of marine microbial communities. Appl. Environ. Microbiol. 61, 3623–3627 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McDaniel, L. D., Rosario, K., Breitbart, M. & Paul, J. H. Comparative metagenomics: natural populations of induced prophages demonstrate highly unique, lower diversity viral sequences. Environ. Microbiol. 16, 570–585 (2014)

    CAS  PubMed  Google Scholar 

  33. Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009)

    ADS  CAS  PubMed  Google Scholar 

  34. Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015)

    PubMed  PubMed Central  Google Scholar 

  35. Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, e368 (2006)

    PubMed  PubMed Central  Google Scholar 

  38. Breitbart, M. et al. Diversity and population structure of a near-shore marine-sediment viral community. Proc. R. Soc. Lond. B 271, 565–574 (2004)

    Google Scholar 

  39. Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2015)

    PubMed  PubMed Central  Google Scholar 

  40. Våge, S., Storesund, J. E. & Thingstad, T. F. Adding a cost of resistance description extends the ability of virus-host model to explain observed patterns in structure and function of pelagic microbial communities. Environ. Microbiol. 15, 1842–1852 (2013)

    PubMed  Google Scholar 

  41. Avrani, S. & Lindell, D. Convergent evolution toward an improved growth rate and a reduced resistance range in Prochlorococcus strains resistant to phage. Proc. Natl Acad. Sci. USA 112, E2191–E2200 (2015)

    ADS  CAS  PubMed  Google Scholar 

  42. Kelly, L. W. et al. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc. Natl Acad. Sci. USA 111, 10227–10232 (2014)

    ADS  CAS  PubMed  Google Scholar 

  43. Silveira, C. B. et al. Microbial and sponge loops modify fish production in phase-shifting coral reefs. Environ. Microbiol. 17, 3832–3846 (2015)

    CAS  PubMed  Google Scholar 

  44. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013)

    ADS  CAS  PubMed  Google Scholar 

  45. Whiteson, K. L. et al. The upper respiratory tract as a microbial source for pulmonary infections in cystic fibrosis. Parallels from island biogeography. Am. J. Respir. Crit. Care Med. 189, 1309–1315 (2014)

    PubMed  PubMed Central  Google Scholar 

  46. Willner, D. et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS One 4, e7370 (2009)

    ADS  PubMed  PubMed Central  Google Scholar 

  47. Haas, A. F. et al. Unraveling the unseen players in the ocean - a field guide to water chemistry and marine microbiology. J. Vis. Exp . 93, e52131 (2014)

    Google Scholar 

  48. Brussaard, C. P. D., Payet, J. P., Winter, C. & Weinbauer, M. G. Quantification of aquatic viruses by flow cytometry. Man. Aquat. Viral Ecol . 11, 102–109 (2010)

    Google Scholar 

  49. Murray, J. D. Mathematical biology: I. an introduction . (Springer, 2002)

  50. Amossé, J. et al. The flows of nitrogen, bacteria and viruses from the soil to water compartments are influenced by earthworm activity and organic fertilization (compost vs. vermicompost). Soil Biol. Biochem. 66, 197–203 (2013)

    Google Scholar 

  51. Bettarel, Y., Bouvy, M., Dumont, C. & Sime-Ngando, T. Virus-bacterium interactions in water and sediment of West African inland aquatic systems. Appl. Environ. Microbiol. 72, 5274–5282 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bouvier, T. & Maurice, C. F. A single-cell analysis of virioplankton adsorption, infection, and intracellular abundance in different bacterioplankton physiologic categories. Microb. Ecol. 62, 669–678 (2011)

    PubMed  Google Scholar 

  53. Glud, R. N. & Middelboe, M. Virus and bacteria dynamics of a coastal sediment: implication for benthic carbon cycling. Limnol. Oceanogr. 49, 2073–2081 (2004)

    ADS  Google Scholar 

  54. Furlan, M. Viral and microbial dynamics in the human respiratory tract . (San Diego State Univ., 2009)

  55. Hewson, I., O’Neil, J. M., Fuhrman, J. A. & Dennison, W. C. Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol. Oceanogr. 46, 1734–1746 (2001)

    ADS  Google Scholar 

  56. Kim, M.-S., Park, E.-J., Roh, S. W. & Bae, J.-W. Diversity and abundance of single-stranded DNA viruses in human feces. Appl. Environ. Microbiol. 77, 8062–8070 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lisle, J. T. & Priscu, J. C. The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica. Microb. Ecol. 47, 427–439 (2004)

    CAS  PubMed  Google Scholar 

  58. Laybourn-Parry, J., Marshall, W. A. & Madan, N. J. Viral dynamics and patterns of lysogeny in saline Antarctic lakes. Polar Biol. 30, 351–358 (2006)

    Google Scholar 

  59. Madan, N. J., Marshall, W. a. & Laybourn-Parry, J. Virus and microbial loop dynamics over an annual cycle in three contrasting Antarctic lakes. Freshw. Biol. 50, 1291–1300 (2005)

    Google Scholar 

  60. Maurice, C. F., Bouvier, T., Comte, J., Guillemette, F. & Del Giorgio, P. A. Seasonal variations of phage life strategies and bacterial physiological states in three northern temperate lakes. Environ. Microbiol. 12, 628–641 (2010)

    CAS  PubMed  Google Scholar 

  61. Maurice, C. F. et al. Disentangling the relative influence of bacterioplankton phylogeny and metabolism on lysogeny in reservoirs and lagoons. ISME J. 5, 831–842 (2011)

    CAS  PubMed  Google Scholar 

  62. Mei, M. L. & Danovaro, R. Virus production and life strategies in aquatic sediments. Limnol. Oceanogr. 49, 459–470 (2004)

    ADS  Google Scholar 

  63. Parsons, R. J., Breitbart, M., Lomas, M. W. & Carlson, C. A. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea. ISME J. 6, 273–284 (2012)

    CAS  PubMed  Google Scholar 

  64. Parsons, R. J. et al. Marine bacterioplankton community turnover within seasonally hypoxic waters of a subtropical sound: Devil’s Hole, Bermuda. Environ. Microbiol. 17, 3481–3499 (2015)

    CAS  PubMed  Google Scholar 

  65. Rinta-Kanto, J. M., Lehtola, M. J., Vartiainen, T. & Martikainen, P. J. Rapid enumeration of virus-like particles in drinking water samples using SYBR green I-staining. Water Res. 38, 2614–2618 (2004)

    CAS  PubMed  Google Scholar 

  66. Schapira, M. et al. Distribution of heterotrophic bacteria and virus-like particles along a salinity gradient in a hypersaline coastal lagoon. Aquat. Microb. Ecol. 54, 171–183 (2009)

    Google Scholar 

  67. Payet, J. P., McMinds, R., Burkepile, D. E. & Vega Thurber, R. L. Unprecedented evidence for high viral abundance and lytic activity in coral reef waters of the South Pacific Ocean. Front. Microbiol . 5, 493 (2014)

    PubMed  PubMed Central  Google Scholar 

  68. Patten, N. L., Harrison, P. L. & Mitchell, J. G. Prevalence of virus-like particles within a staghorn scleractinian coral (Acropora muricata) from the Great Barrier Reef. Coral Reefs 27, 569–580 (2008)

    ADS  Google Scholar 

  69. Duhaime, M. B., Deng, L., Poulos, B. T. & Sullivan, M. B. Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ. Microbiol. 14, 2526–2537 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schmieder, R., Lim, Y. W., Rohwer, F. & Edwards, R. TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets. BMC Bioinformatics 11, 341 (2010)

    PubMed  Google Scholar 

  72. Schmieder, R. & Edwards, R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One 6, e17288 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Silva, G. G. Z., Cuevas, D. A., Dutilh, B. E. & Edwards, R. A. FOCUS: an alignment-free model to identify organisms in metagenomes using non-negative least squares. PeerJ 2, e425 (2014)

    PubMed  PubMed Central  Google Scholar 

  74. Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. in German conference on bioinformatics 45–56 (1999)

  75. Rho, M., Tang, H. & Ye, Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191 (2010)

    PubMed  PubMed Central  Google Scholar 

  76. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Angly, F. E. et al. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. PLOS Comput. Biol. 5, e1000593 (2009)

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  78. Dutilh, B. E. et al. Reference-independent comparative metagenomics using cross-assembly: crAss. Bioinformatics 28, 3225–3231 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sanchez, S. E. et al. Phage Phenomics: physiological approaches to characterize novel viral proteins. J. Vis. Exp . 100, e52854 (2015)

    Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of Mike Furlan, mentor, friend, and colleague. We are grateful to the National Oceanographic and Atmospheric Administration Coral Reef Ecosystem Division for supporting this research, and to the captains and crews of the NOAA ship Hi’ialakai and the Hanse Explorer. Thanks to J. Payet for providing viral and microbial abundance data. Sampling was carried out under research permits from the US Fish and Wildlife Service, Palmyra Atoll National Wildlife Refuge, the Environment and Conservation Division of the Republic of Kiribati (n. 021/13) and ICMBio, Brazil (n. 27147-2). This work was funded by the Canadian Institute for Advanced Research Integrated Microbial Biodiversity Program Fellowship Award 141679 (to F.R.) and National Science Foundation grants OISE-1243541 and DEB-1046413 (to F.R.), CNS-1305112 and MCB-1330800 (to R.A.E.), DUE-1323809 (to E.A.D.), Gordon and Betty Moore Foundation Investigator Award GBMF-3781 (to F.R.), and the Brazilian National Research Council (CNPq; to F.T.) and Brazilian National Research Council Science Without Borders Program (CNPq/CAPES; to C.B.S.).

Author information

Authors and Affiliations

Authors

Contributions

F.R., B.K., C.B.S., and F.T. conceptualized the project; B.K., F.R., C.B.S., and M.Y. wrote the manuscript; B.K., C.B.S., V.A.C., A.G.C.-G., K.T.G, K.M., G.G.Z.S., S.D.Q., Y.W.L., S.E.S., F.H.C., E.R.H. , N.L.R., B.A.B., B.F., A.L., P.S., J.N., C.Y., E.E.G., M.L., K.A.F., L.S.O., T.M.-S., J.M.H., B.Z., A.F.H., M.J.A.V., K.B., C.S., R.A.E., and F.R. performed sample collection, processing, experiments, and analysis; N.H. provided graphics and GIS analysis; E.A.D., L.W.K., S.S., J.S., R.B., C.T., G.B.G., J.N., E.S., R.A.E., F.T., and F.R. provided intellectual guidance and funding during the development of the research.

Corresponding authors

Correspondence to B. Knowles or F. Rohwer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 The observed decline in virus to microbe ratio with increasing host density is not supported by horizontal transfer (for example, of resistance genes) under conditions where strain diversity is predicted to rise.

a, Host competence gene composition likely does not facilitate the expected rise in resistance to viral infection (n = 66; m = −0.25, t = −2.40, d.f. = 64, P = 0.02; R2 = 0.08; microbial abundance log-transformed; linear regression). b, Lysogeny may provide strain diversification similar to the co-evolutionary diversification predicted by Thingstad et al. (2014)9 nested-infection chemostat model.

Source data

Extended Data Figure 2 Meta-analysis of the frequency of lysogenic cells (FLC) from mitomycin C induction experiments yields ambiguous results.

FLC from four published studies is plotted against total cell abundance. Although a sometimes-significant negative relationship exists at a within-study level (microbial abundance log-transformed; Muck et al. (2014)28, n = 9, m = −10.79, t = −1.76, d.f. = 7, P = 0.12; R2 = 0.31; Bongiorni et al. (2005)29, n = 4, m = −17.23, t = −1.91, d.f. = 2, P = 0.20; R2 = 0.65; Payet and Suttle (2013)4, n = 9, m = −48.31, t = −4.80, d.f. = 7, P = 1.96 × 10−3; R2 = 0.77; Williamson et al. (2002)30, n = 5, m = −26.08, t = −1.08, d.f. = 3, P = 0.36; R2 = 0.28; linear regression of each data set examined independently), when examined altogether across the full range of host abundances studied, no significant slope was observed (microbial abundance log-transformed; n = 27, m = −0.11, t = −0.04, d.f. = 25, P = 0.97; R2 = 5.94 × 10−5; linear regression of pooled data).

Source data

Extended Data Figure 3 Decline in virus to microbe ratio (VMR) observed in incubations with elevated host density over time, contrasted with published values and viral decay.

a, Log-transformed VLP density in experimental incubations is plotted against microbial host density over time (dot size) with VMR indicated by dot colour. Data from Mission Bay (MB) and Palmyra (Pal) water with DOC added (+ DOC) or not (− DOC) is complemented by the nutrient-added ‘lytic’ system of Hennes et al. (1995)31 (H + Nutrients) as well as the ‘non-lytic’ dilutions (3%, 10%, 20%, and 30% final concentration seawater diluted by 0.02 μm filtered seawater) of Wilcox and Fuhrman (1994)3; WF 3% SW, WF 10% SW, WF 20% SW, WF 30% SW). n = 1 all incubations and published mean values. b, Significant viral decay was not observed in cell-free viral decay controls in incubation experiments (Palmyra: n = 4, m = 1.64 × 10−3, t = 1.48, d.f. = 2, P = 0.28; R2 = 0.52; Mission Bay: n = 6, m = 4.53 × 10−3, t = 1.87, d.f. = 4, P = 0.14; R2 = 0.47; linear regression with log-transformed viral density).

Source data

Extended Data Figure 4 Temperateness of viral communities increases with host density and viral functional composition change.

a, The relative composition of provirus-like reads, normalized by total sequences in each sample, increases with host density in viral metagenomes (host density log-transformed; n = 24 independent measures). The linear equations and line of best fit from robust regression and bootstrapped 95% and 90% confidence intervals (CIs) for the slope are shown. Goodness of fit metrics are inappropriate for robust regression and are omitted. b, Viromes clustered by functional similarity (crAss cross-assembly), showing higher host density Pacific viromes (*) grouped away from lower host density Atlantic viromes (†); site names coloured by host density.

Source data

Extended Data Table 1 Summary of linear regression analyses of published microbial and viral counts
Extended Data Table 2 Summary information on the post-quality control viromes analysed
Extended Data Table 3 Summary of model II OLS, MA, and SMA regression analyses

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knowles, B., Silveira, C., Bailey, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016). https://doi.org/10.1038/nature17193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature17193

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing