Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

Abstract

The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate1. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change2,3. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively4,5,6, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall biogenic GHG balance of the terrestrial biosphere in the 2000s.
Figure 2: Changes in the decadal balance of human-induced biogenic GHGs in the past three decades (based on GWP100).
Figure 3: The balance of human-induced biogenic GHGs for different continents in the 2000s (based on GWP100).

Similar content being viewed by others

References

  1. Lovelock, J. E. & Margulis, L. Atmospheric homeostasis by and for the biosphere: the gaia hypothesis. Tellus A 26, http://dx.doi.org/10.3402/tellusa.v26i1-2.9731 (1974)

  2. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997)

    Article  CAS  Google Scholar 

  3. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al. ) Ch. 6 (Cambridge Univ. Press, 2013)

  4. Le Quéré, C. et al. Global carbon budget 2013. Earth Syst. Sci. Data 6, 235–263 (2014)

    Article  ADS  Google Scholar 

  5. Kirschke, S. et al. Three decades of global methane sources and sinks. Nature Geosci . 6, 813–823 (2013)

    Article  CAS  ADS  Google Scholar 

  6. Davidson, E. A. & Kanter, D. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 9, 105012 (2014)

    Article  ADS  CAS  Google Scholar 

  7. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al. ) Ch. 8 (Cambridge Univ. Press, 2013)

  8. Montzka, S., Dlugokencky, E. & Butler, J. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Schulze, E. et al. Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nature Geosci . 2, 842–850 (2009)

    Article  CAS  Google Scholar 

  10. Tian, H. et al. North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Clim. Change 129, 413–426 (2015)

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Allen, M. Short-lived Promise? The Science and Policy of Cumulative and Short-Lived Climate Pollutants http://www.oxfordmartin.ox.ac.uk/publications/view/1960 (Oxford Martin Policy Paper, Oxford Martin School, Univ. Oxford, 2015)

  12. Jacobson, A. R., Mikaloff Fletcher, S. E., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint atmosphere–ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global–scale fluxes. Glob. Biogeochem. Cycles 21, GB1019 (2007)

    ADS  Google Scholar 

  13. Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015)

    Article  ADS  Google Scholar 

  14. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Dlugokencky, E. et al. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 36, L18803 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Rigby, M. et al. Renewed growth of atmospheric methane. Geophys. Res. Lett. 35, L22805, http://dx.doi.org/10.1029/2008GL036037 (2008)

    Article  ADS  Google Scholar 

  17. Nisbet, E. G., Dlugokencky, E. J. & Bousquet, P. Methane on the rise — again. Science 343, 493–495 (2014)

    Article  CAS  ADS  PubMed  Google Scholar 

  18. Tian, H. et al. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosyst. Health Sustain . 1, 4 (2015)

    Article  Google Scholar 

  19. Saikawa, E. et al. Global and regional emissions estimates for N2O. Atmos. Chem. Phys. 14, 4617–4641 (2014)

    Article  ADS  CAS  Google Scholar 

  20. Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles 23, GB2002 (2009)

    Article  ADS  CAS  Google Scholar 

  21. FAO. Current World Fertilizer Trends and Outlook to 2015 http://www.fao.org/3/a-av252e.pdf (Food and Agriculture Organization of the United Nations, Rome, 2011)

  22. Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al. ) Ch. 11, 816–922 (Cambridge Univ. Press, 2014)

    Google Scholar 

  23. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  24. Valentini, R. et al. A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences 11, 381–407 (2014)

    Article  ADS  CAS  Google Scholar 

  25. Li, C., Frolking, S. & Butterbach-Bahl, K. Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim. Change 72, 321–338 (2005)

    Article  CAS  ADS  Google Scholar 

  26. Yu, K., Chen, G. & Patrick, W. H. Reduction of global warming potential contribution from a rice field by irrigation, organic matter, and fertilizer management. Glob. Biogeochem. Cycles 18, GB3018 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Murdiyarso, D., Hergoualc’h, K. & Verchot, L. Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc. Natl Acad. Sci. USA 107, 19655–19660 (2010)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  28. Melillo, J. M. et al. Indirect emissions from biofuels: how important? Science 326, 1397–1399 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  29. Canadell, J. G. & Schulze, E. D. Global potential of biospheric carbon management for climate mitigation. Nature Commun . 5, 5282 (2014)

    Article  ADS  Google Scholar 

  30. Stocker, B. D. et al. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nature Clim. Change 3, 666–672 (2013)

    CAS  ADS  Google Scholar 

  31. Gurney, K. R., Baker, D., Rayner, P. & Denning, S. Interannual variations in continental-scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO2 inversions for the period 1980 to 2005. Glob. Biogeochem. Cycles 22, GB3025 (2008)

    Article  ADS  CAS  Google Scholar 

  32. Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015)

    Article  CAS  ADS  Google Scholar 

  33. Huntzinger, D. et al. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project–part 1: Overview and experimental design. Geosci. Model Dev. 6, 2121–2133 (2013)

    Article  ADS  Google Scholar 

  34. Schwalm, C. R. et al. Toward “optimal” integration of terrestrial biosphere models. Geophys. Res. Lett. 42, 4418–4428 (2015)

    Article  ADS  Google Scholar 

  35. Joosten, H. The Global Peatland CO 2 Picture: Peatland Status and Drainage Related Emissions in All Countries of the Worldhttp://www.wetlands.org/Portals/0/publications/Report/The%20Global%20Peatland%20CO2%20Picture_web%20Aug%202010.pdf (Greifswald University Wetlands International, Ede, 2010)

  36. Bruhwiler, L. et al. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys. 14, 8269–8293 (2014)

    Article  ADS  CAS  Google Scholar 

  37. Tian, H. et al. Contemporary and projected biogenic fluxes of methane and nitrous oxide in North American terrestrial ecosystems. Front. Ecol. Environ 10, 528–536 (2012)

    Article  Google Scholar 

  38. van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010)

    Article  CAS  ADS  Google Scholar 

  39. EDGAR Emission Database for Global Atmospheric Research (EDGAR) release version 4.2 http://edgar.jrc.ec.europa.eu/overview.php?v=42 (2014); accessed 2 February 2016

  40. Ludwig, W., Amiotte-Suchet, P. & Probst, J. ISLSCP II atmospheric carbon dioxide consumption by continental erosion . http://dx.doi.org/10.3334/ORNLDAAC/1019 (ORNL DAAC, 2011)

  41. Sarmiento, J. & Sundquist, E. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356, 589–593 (1992)

    Article  CAS  ADS  Google Scholar 

  42. Houweling, S., Van der Werf, G., Klein Goldewijk, K., Röckmann, T. & Aben, I. Early anthropogenic CH4 emissions and the variation of CH4 and 13CH4 over the last millennium. Glob. Biogeochem. Cycles 22, GB1002 (2008)

    Article  ADS  CAS  Google Scholar 

  43. Basu, A. et al. Analysis of the global atmospheric methane budget using ECHAM-MOZ simulations for present-day, pre-industrial time and the Last Glacial Maximum. Atmos. Chem. Phys. Discuss . 14, 3193–3230 (2014)

    ADS  Google Scholar 

  44. Dlugokencky, E. J., Nisbet, E. G., Fisher, R. & Lowry, D. Global atmospheric methane: budget, changes and dangers. Phil. Trans. R. Soc. A 369, 2058–2072 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  45. Lu, C. & Tian, H. Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model. Glob. Change Biol. 19, 571–588 (2013)

    Article  ADS  Google Scholar 

  46. Tian, H. et al. Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J. Geophys. Res. 116, G02011 (2011)

    ADS  Google Scholar 

  47. Banger, K. et al. Biosphere–atmosphere exchange of methane in India as influenced by multiple environmental changes during 1901–2010. Atmos. Environ. 119, 192–200 (2015)

    Article  CAS  ADS  Google Scholar 

  48. King, A. et al. North America’s net terrestrial CO2 exchange with the atmosphere 1990–2009. Biogeosciences 12, 399–414 (2015)

    Article  CAS  ADS  Google Scholar 

  49. Baker, D. et al. TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003. Glob. Biogeochem. Cycles 20, GB1002, http://dx.doi.org/10.1029/2004GB002439 (2006)

    Article  ADS  CAS  Google Scholar 

  50. Goldewijk, K. K. Estimating global land use change over the past 300 years: the HYDE database. Glob. Biogeochem. Cycles 15, 417–433 (2001)

    Article  ADS  Google Scholar 

  51. Hurtt, G. et al. The underpinnings of land–use history: three centuries of global gridded land–use transitions, wood–harvest activity, and resulting secondary lands. Glob. Change Biol. 12, 1208–1229 (2006)

    Article  ADS  Google Scholar 

  52. Liu, M. & Tian, H. China's land cover and land use change from 1700 to 2005: estimations from high–resolution satellite data and historical archives. Glob. Biogeochem. Cycles 24, GB3003 (2010)

    Article  ADS  CAS  Google Scholar 

  53. Tian, H., Banger, K., Bo, T. & Dadhwal, V. K. History of land use in India during 1880–2010: large-scale land transformations reconstructed from satellite data and historical archives. Global Planet. Change 121, 78–88 (2014)

    Article  ADS  Google Scholar 

  54. Friedlingstein, P. et al. Update on CO2 emissions. Nature Geosci . 3, 811–812 (2010)

    Article  CAS  ADS  Google Scholar 

  55. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  56. Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573–1576 (2012)

    Article  CAS  ADS  PubMed  Google Scholar 

  57. Archer-Nicholls, S. et al. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol. Geosci. Model Dev . 8, 549–577 (2015)

    Article  ADS  Google Scholar 

  58. Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013)

    Article  CAS  ADS  Google Scholar 

  59. Thornton, P. E. et al. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6, 2099–2120 (2009)

    Article  CAS  ADS  Google Scholar 

  60. Sokolov, A. P. et al. Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J. Clim. 21, 3776–3796 (2008)

    Article  ADS  Google Scholar 

  61. Zaehle, S., Friedlingstein, P. & Friend, A. D. Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys. Res. Lett. 37, L01401 (2010)

    Article  ADS  CAS  Google Scholar 

  62. Goward, S. N. et al. Forest disturbance and North American carbon flux. Eos Trans. AGU 89, 105–106 (2008)

    Article  ADS  Google Scholar 

  63. Williams, C. A., Collatz, G. J., Masek, J. & Goward, S. N. Carbon consequences of forest disturbance and recovery across the conterminous United States. Glob. Biogeochem. Cycles 26, GB1005 (2012)

  64. Bellassen, V. et al. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob. Change Biol. 17, 3274–3292 (2011)

    Article  ADS  Google Scholar 

  65. Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  66. Zscheischler, J. et al. Impact of large–scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data. Glob. Biogeochem. Cycles 28, 585–600 (2014)

    Article  CAS  ADS  Google Scholar 

  67. Melton, J. et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model intercomparison project (WETCHIMP). Biogeosciences 10, 753–788 (2013)

    Article  ADS  Google Scholar 

  68. Prigent, C. et al. Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys. Res. Lett. 39, L08403 (2012)

    Article  ADS  Google Scholar 

  69. Ren, W. et al. Spatial and temporal patterns of CO2 and CH4 fluxes in China’s croplands in response to multifactor environmental changes. Tellus B 63, 222–240 (2011)

    Article  CAS  ADS  Google Scholar 

  70. Banger, K., Tian, H. & Lu, C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob. Change Biol. 18, 3259–3267 (2012)

    Article  ADS  Google Scholar 

  71. Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nature Clim. Change 2, 410–416 (2012)

    Article  CAS  ADS  Google Scholar 

  72. Saikawa, E., Schlosser, C. & Prinn, R. Global modeling of soil nitrous oxide emissions from natural processes. Glob. Biogeochem. Cycles 27, 972–989 (2013)

    Article  CAS  ADS  Google Scholar 

  73. Bouwman, A. et al. Global trends and uncertainties in terrestrial denitrification and N2O emissions. Phil. Trans. R. Soc. Lond. B 368, 20130112, http://dx.doi.org/10.1098/rstb.2013.0112(2013)

    Article  CAS  Google Scholar 

  74. Butterbach-Bahl, K., Diaz-Pines, E. & Dannenmann, M. in Handbook of Global Environmental Pollution Vol. 1, Global Environmental Change 325–334 (Springer, 2014)

  75. Potter, C. S., Matson, P. A., Vitousek, P. M. & Davidson, E. A. Process modeling of controls on nitrogen trace gas emissions from soils worldwide. J. Geophys. Res. Atmos. 101, 1361–1377 (1996)

    Article  CAS  ADS  Google Scholar 

  76. Xu, X., Tian, H. & Hui, D. Convergence in the relationship of CO2 and N2O exchanges between soil and atmosphere within terrestrial ecosystems. Glob. Change Biol. 14, 1651–1660 (2008)

    Article  ADS  Google Scholar 

  77. Zhuang, Q. et al. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition. Glob. Biogeochem. Cycles 27, 650–663 (2013)

    Article  CAS  ADS  Google Scholar 

  78. Liengaard, L. et al. Extreme emission of N2O from tropical wetland soil (Pantanal, South America). Front. Microbiol . 3, 1–13 (2012)

    Google Scholar 

Download references

Acknowledgements

This research was supported partially by NASA grants (NNX08AL73G, NNX14AO73G, NNX10AU06G, NNX11AD47G, NNG04GM39C) and NSF grants (AGS 1243232, AGS-1243220, CNH1210360). J.G.C. was supported by the Australian Climate Change Science Program. E.S. was supported by the NOAA Climate Program Office (award NA13OAR4310059). C.R.S. was supported by NASA grants (NNX12AP74G, NNX10AG01A, NNX11AO08A). K.R.G. was supported by NSF CAREER (AGS-0846358). R.G.P. was supported by a NASA Upper Atmosphere Research Program AGAGE grant (NNX11AF17G to MIT). This study contributes to the Non-CO2 Greenhouse Gases Synthesis of NACP (North American Carbon Program), and the Global Carbon Project (a joint project of IGBP, IHDP, WCRP and Diversitas).

Author information

Authors and Affiliations

Authors

Contributions

H.T. initiated this research and was responsible for the integrity of the work as a whole. H.T. and C.L. performed analysis, calculations and drafted the manuscript. P.C., A.M.M. and J.G.C. contributed to data synthesis and manuscript development. B.Z., J.Y., G.C. and S.P. contributed to data collection and analysis. E.S., D.N.H., K.R.G., S.S., P.B., L.B., E.D., P. F., J.M., B.P., R.G.P., M.S., C.R.S. and S.C.W. contributed to data provision, data processing, or interpretation. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Hanqin Tian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Table 1 Decadal estimates of global terrestrial biogenic CO2, CH4 and N2O fluxes

Supplementary information

Supplementary Information

This file contains a list of data sources used in the study and Supplementary Tables 1-3. (PDF 692 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Lu, C., Ciais, P. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225–228 (2016). https://doi.org/10.1038/nature16946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature16946

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology