Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-destructive state detection for quantum logic spectroscopy of molecular ions

Abstract

Precision laser spectroscopy1 of cold and trapped molecular ions is a powerful tool in fundamental physics—used, for example, in determining fundamental constants2, testing for their possible variation in the laboratory3,4, and searching for a possible electric dipole moment of the electron5. However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions6, and for controlling7,8,9,10,11 and detecting their quantum states. Previously used state-detection techniques based on photodissociation12 or chemical reactions13 are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy. Here, we experimentally demonstrate non-destructive detection of the quantum state of a single trapped molecular ion through its strong Coulomb coupling to a well controlled, co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force14 changes the internal state of the atom according to the internal state of the molecule. We show that individual quantum states in the molecular ion can be distinguished by the strength of their coupling to the optical dipole force. We also observe quantum jumps (induced by black-body radiation) between rotational states of a single molecular ion. Using the detuning dependence of the state-detection signal, we implement a variant of quantum logic spectroscopy15,16 of a molecular resonance. Our state-detection technique is relevant to a wide range of molecular ions, and could be applied to state-controlled quantum chemistry17 and to spectroscopic investigations of molecules that serve as probes for interstellar clouds18,19.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coupling strength of an optical dipole force to the atomic and molecular ions.
Figure 2: Mapping of the molecular state to the motional qubit.
Figure 3: Non-destructive state detection.
Figure 4: Quantum logic spectroscopy.

References

  1. Germann, M., Tong, X. & Willitsch, S. Observation of electric-dipole-forbidden infrared transitions in cold molecular ions. Nature Phys. 10, 820–824 (2014)

    Article  CAS  ADS  Google Scholar 

  2. Koelemeij, J., Roth, B., Wicht, A., Ernsting, I. & Schiller, S. Vibrational spectroscopy of HD+ with 2-ppb accuracy. Phys. Rev. Lett. 98, 173002 (2007)

    Article  ADS  Google Scholar 

  3. Schiller, S. & Korobov, V. Tests of time independence of the electron and nuclear masses with ultracold molecules. Phys. Rev. A 71, 032505 (2005)

    Article  ADS  Google Scholar 

  4. Flambaum, V. & Kozlov, M. Enhanced sensitivity to the time variation of the fine-structure constant and mp/me in diatomic molecules. Phys. Rev. Lett. 99, 150801 (2007)

    Article  CAS  ADS  Google Scholar 

  5. Loh, H. et al. Precision spectroscopy of polarized molecules in an ion trap. Science 342, 1220–1222 (2013)

    Article  CAS  ADS  Google Scholar 

  6. Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010)

    Article  CAS  ADS  Google Scholar 

  7. Rellergert, W. G. et al. Evidence for sympathetic vibrational cooling of translationally cold molecules. Nature 495, 490–494 (2013)

    Article  CAS  ADS  Google Scholar 

  8. Schneider, T., Roth, B., Duncker, H., Ernsting, I. & Schiller, S. All-optical preparation of molecular ions in the rovibrational ground state. Nature Phys. 6, 275–278 (2010)

    Article  CAS  ADS  Google Scholar 

  9. Staanum, P. F., Højbjerre, K., Skyt, P. S., Hansen, A. K. & Drewsen, M. Rotational laser cooling of vibrationally and translationally cold molecular ions. Nature Phys. 6, 271–274 (2010)

    Article  CAS  ADS  Google Scholar 

  10. Lien, C.-Y. et al. Broadband optical cooling of molecular rotors from room temperature to the ground state. Nature Commun. 5, 4783 (2014)

    Article  CAS  ADS  Google Scholar 

  11. Hansen, A. K. et al. Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas. Nature 508, 76–79 (2014)

    Article  CAS  ADS  Google Scholar 

  12. Højbjerre, K., Hansen, A. K., Skyt, P. S., Staanum, P. F. & Drewsen, M. Rotational state resolved photodissociation spectroscopy of translationally and vibrationally cold MgH+ ions: toward rotational cooling of molecular ions. New J. Phys. 11, 055026 (2009)

    Article  ADS  Google Scholar 

  13. Tong, X., Winney, A. & Willitsch, S. Sympathetic cooling of molecular ions in selected rotational and vibrational states produced by threshold photoionization. Phys. Rev. Lett. 105, 143001 (2010)

    Article  ADS  Google Scholar 

  14. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003)

    Article  CAS  ADS  Google Scholar 

  15. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005)

    Article  CAS  ADS  Google Scholar 

  16. Wan, Y. et al. Precision spectroscopy by photon-recoil signal amplification. Nature Commun. 5, 4096 (2014)

    Article  Google Scholar 

  17. Ratschbacher, L., Zipkes, C., Sias, C. & Köhl, M. Controlling chemical reactions of a single particle. Nature Phys. 8, 649–652 (2012)

    Article  CAS  ADS  Google Scholar 

  18. Brünken, S. et al. H2D+ observations give an age of at least one million years for a cloud core forming Sun-like stars. Nature 516, 219–221 (2014)

    Article  ADS  Google Scholar 

  19. Campbell, E. K., Holz, M., Gerlich, D. & Maier, J. P. Laboratory confirmation of as the carrier of two diffuse interstellar bands. Nature 523, 322–323 (2015)

    CAS  Google Scholar 

  20. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  CAS  ADS  Google Scholar 

  21. Schmidt-Kaler, F. et al. Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003)

    Article  CAS  ADS  Google Scholar 

  22. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Article  CAS  Google Scholar 

  23. Schmidt, P. O. et al. in Proceedings of Non-Neutral Plasma Physics VI, Workshop on Non-Neutral Plasmas, Vol. 862 (eds Drewsen, M., Uggerhøj, U. & Knudsen, H. ) 305–312 (Aarhus, 2006)

  24. Vogelius, I. S., Madsen, L. B. & Drewsen, M. Probabilistic state preparation of a single molecular ion by projection measurement. J. Phys. At. Mol. Opt. Phys. 39, S1259–S1265 (2006)

    Article  CAS  ADS  Google Scholar 

  25. Hume, D. B. et al. Trapped-ion state detection through coherent motion. Phys. Rev. Lett. 107, 243902 (2011)

    Article  CAS  ADS  Google Scholar 

  26. Balfour, W. J. Rotational analysis of the A1Σ+X1Σ+ and B1Π → X1Σ+ systems of 24MgH+, 25MgH+, and 26MgH+. Can. J. Phys. 50, 1082–1091 (1972)

    Article  CAS  ADS  Google Scholar 

  27. Wan, Y., Gebert, F., Wolf, F. & Schmidt, P. O. Efficient sympathetic motional-ground-state cooling of a molecular ion. Phys. Rev. A 91, 043425 (2015)

    Article  ADS  Google Scholar 

  28. Leibfried, D. Quantum state preparation and control of single molecular ions. New J. Phys. 14, 023029 (2012)

    Article  ADS  Google Scholar 

  29. Ding, S. & Matsukevich, D. N. Quantum logic for the control and manipulation of molecular ions using a frequency comb. New J. Phys. 14, 023028 (2012)

    Article  ADS  Google Scholar 

  30. Schiller, S., Bakalov, D. & Korobov, V. I. Simplest molecules as candidates for precise optical clocks. Phys. Rev. Lett. 113, 023004 (2014)

    Article  CAS  ADS  Google Scholar 

  31. Hemmerling, B. et al. A single laser system for ground state cooling of 25Mg+. Appl. Phys. B 104, 583590 (2011)

    Article  Google Scholar 

  32. Ozeri, R. et al. Hyperfine coherence in the presence of spontaneous photon scattering. Phys. Rev. Lett. 95, 030403 (2005)

    Article  CAS  ADS  Google Scholar 

  33. Gebert, F. et al. Damage-free single-mode transmission of deep-UV light in hollow-core PCF. Opt. Express 22, 15388–15396 (2014)

    Article  CAS  ADS  Google Scholar 

  34. James, D. F. V. Quantum dynamics of cold trapped ions with application to quantum computation. Appl. Phys. B 66, 181–190 (1998)

    Article  CAS  ADS  Google Scholar 

  35. Hemmerling, B., Gebert, F., Wan, Y. & Schmidt, P. O. A novel, robust quantum detection scheme. New J. Phys. 14, 023043 (2012)

    Article  ADS  Google Scholar 

  36. Aymar, M., Guérout, R., Sahlaoui, M. & Dulieu, O. Electronic structure of the magnesium hydride molecular ion. J. Phys. At. Mol. Opt. Phys. 42, 154025 (2009)

    Article  ADS  Google Scholar 

  37. Hansson, A. & Watson, J. K. A comment on Hönl-London factors. J. Mol. Spectrosc. 233, 169–173 (2005)

    Article  CAS  ADS  Google Scholar 

  38. Bergmann, K. & Shore, B. W. Coherent Population Transfer, Ch. 9 (eds Dai, H.-L. & Field, R. W. ) 367 (World Scientific, 1995)

Download references

Acknowledgements

We acknowledge the support of the Deutsche Forschungsgemeinschaft through QUEST and grant SCHM2678/3-1. This work was financially supported by the State of Lower-Saxony, Hannover, Germany. Y.W. acknowledges support from the Braunschweig International Graduate School of Metrology. We thank E. Tiemann, H. Knöckel, O. Dulieu and I.D. Leroux for discussions; M. Drewsen and O. Dulieu for the transition-matrix elements for 24MgH+; and E. Tiemann, B. Hemmerling, and I.D. Leroux for reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

P.O.S. conceived and supervised the experiment. F.W. developed the read-out algorithm. F.W., J.C.H. and C.S. carried out the measurements. Y.W. performed the simulations and calculated the lattice coupling strength. F.W. and P.O.S. wrote the main part of the manuscript. Y.W. and F.G. built essential parts of the experiment. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Piet O. Schmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Single trajectory from a Monte Carlo simulation of molecular dynamics.

a, The ion initially prepared in the rotational ground state is transferred to higher rotational states because of coupling to black-body radiation at 300 K. b, The probability of finding the ion in a certain rotational state in the simulation (red bars) follows a thermal distribution. The blue bars are calculated values from a master equation approach. The deviation between the red and blue bars results from the finite time interval of the Monte Carlo wavefunction simulation. c, The dwell time decreases for higher rotational states.

Extended Data Figure 2 Rabi flopping between motional states.

Implementation of the sequence shown in Fig. 2 for ΩMgH = 0. The duration of the applied optical lattice is varied to induce Rabi flopping between the motional qubit states |↓〉m and |↑〉m. The error bars show the 95% confidence interval of the photon-distribution fit35. The red dashed line shows a fit to a damped oscillation.

Extended Data Figure 3 Full experimental sequence.

a, Circuit description of the sequence. i, A BSB π-pulse initializes the atom in the state |↑〉Mg and the motional state in the qubit state |↓〉m. ii, The ODF rotates the motional qubit controlled by the internal state of the molecule (see Fig. 2). iii, A second BSB π-pulse maps the motional state (which contains the information about the molecule’s internal state) to the atomic qubit. iv, The atomic qubit’s state is read out by state-dependent fluorescence. b, Pictorial representation of the laser couplings in a simplified level scheme.

Extended Data Figure 4 Raw data for δφ ≈ 0.

a, Theoretically predicted signal for δφ ≈ 0, corresponding to ωIP ≈ 2.21 MHz. b, Expansion of the region shown in a with the seven measured data points that are shown as red diamonds in Fig. 4. The error bars indicate the 68% confidence interval of the photon-distribution fit35.

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, F., Wan, Y., Heip, J. et al. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 530, 457–460 (2016). https://doi.org/10.1038/nature16513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature16513

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing