Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Warm–hot baryons comprise 5–10 per cent of filaments in the cosmic web

Abstract

Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe’s total energy content1. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two2,3. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 105−107 kelvin, known as the warm–hot intergalactic medium3,4,5,6. There have been previous claims of the detection of warm–hot baryons along the line of sight to distant blazars7,8,9,10 and of hot gas between interacting clusters11,12,13,14. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm–hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 107 kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster15 were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5–10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster’s gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the hot gas in and around the galaxy cluster Abell 2744.
Figure 2: Comparison between the distribution of hot gas and galaxies in the region surrounding Abell 2744.
Figure 3: Hot gas, visible light and total mass in Abell 2744.

Similar content being viewed by others

References

  1. Planck Collaboration XIII. Planck 2015 results. XIII. Cosmological parameters. Preprint at http://arXiv.org/abs/1502.01589 (2015)

  2. Fukugita, M., Hogan, C. J. & Peebles, P. J. E. The cosmic baryon budget. Astrophys. J. 503, 518–530 (1998)

    Article  CAS  ADS  Google Scholar 

  3. Cen, R. & Ostriker, J. P. Where are the baryons? Astrophys. J. 514, 1–6 (1999)

    Article  CAS  ADS  Google Scholar 

  4. Davé, R. et al. Baryons in the warm-hot intergalactic medium. Astrophys. J. 552, 473–483 (2001)

    Article  ADS  Google Scholar 

  5. Shull, J. M., Smith, B. D. & Danforth, C. W. The baryon census in a multiphase intergalactic medium: 30% of the baryons may still be missing. Astrophys. J. 759, 23 (2012)

    Article  ADS  CAS  Google Scholar 

  6. Branchini, E. et al. Studying the warm hot intergalactic medium with gamma-ray bursts. Astrophys. J. 697, 328–344 (2009)

    Article  CAS  ADS  Google Scholar 

  7. Fang, T., Canizares, C. R. & Yao, Y. Confirming the detection of an intergalactic X-ray absorber toward PKS 2155–304. Astrophys. J. 670, 992–999 (2007)

    Article  CAS  ADS  Google Scholar 

  8. Buote, D. A. et al. X-ray absorption by WHIM in the Sculptor Wall. Astrophys. J. 695, 1351–1356 (2009)

    Article  CAS  ADS  Google Scholar 

  9. Zappacosta, L. et al. Studying the WHIM content of large-scale structures along the line of sight to H 2356–309. Astrophys. J. 717, 74–84 (2010)

    Article  CAS  ADS  Google Scholar 

  10. Nicastro, F. et al. Chandra view of the warm-hot intergalactic medium toward 1ES 1553+113: absorption-line detections and identifications. I. Astrophys. J. 769, 90 (2013)

    Article  ADS  CAS  Google Scholar 

  11. Kull, A. & Böhringer, H. Detection of filamentary X-ray structure in the core of the Shapley supercluster. Astron. Astrophys. 341, 23–28 (1999)

    ADS  Google Scholar 

  12. Scharf, C., Donahue, M., Voit, G. M., Rosati, P. & Postman, M. Evidence for X-ray emission from a large-scale filament of galaxies? Astrophys. J. 528, L73–L76 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Zappacosta, L. et al. Warm-hot intergalactic baryons revealed. Astron. Astrophys. 394, 7–15 (2002)

    Article  ADS  Google Scholar 

  14. Werner, N. et al. Detection of hot gas in the filament connecting the clusters of galaxies Abell 222 and Abell 223. Astron. Astrophys. 482, L29–L33 (2008)

    Article  CAS  ADS  Google Scholar 

  15. Ibaraki, Y., Ota, N., Akamatsu, H., Zhang, Y.-Y. & Finoguenov, A. Suzaku study of gas properties along filaments of A2744. Astron. Astrophys. 562, A11 (2014)

    Article  Google Scholar 

  16. Merten, J. et al. Creation of cosmic structure in the complex galaxy cluster merger Abell 2744. Mon. Not. R. Astron. Soc. 417, 333–347 (2011)

    Article  ADS  Google Scholar 

  17. Boschin, W., Girardi, M., Spolaor, M. & Barrena, R. Internal dynamics of the radio halo cluster Abell 2744. Astron. Astrophys. 449, 461–474 (2006)

    Article  CAS  ADS  Google Scholar 

  18. Owers, M. S. et al. The dissection of Abell 2744: a rich cluster growing through major and minor mergers. Astrophys. J. 728, 27 (2011)

    Article  ADS  CAS  Google Scholar 

  19. Kempner, J. C. & David, L. P. A Chandra view of the multiple merger in Abell 2744. Mon. Not. R. Astron. Soc. 349, 385–392 (2004)

    Article  CAS  ADS  Google Scholar 

  20. Braglia, F., Pierini, D. & Böhringer, H. Flaming, bright galaxies along the filaments of A 2744. Astron. Astrophys. 470, 425–429 (2007)

    Article  CAS  ADS  Google Scholar 

  21. Jauzac, M. et al. Hubble Frontier Fields: a high-precision strong-lensing analysis of the massive galaxy cluster Abell 2744 using 180 multiple images. Mon. Not. R. Astron. Soc. 452, 1437–1446 (2015)

    Article  CAS  ADS  Google Scholar 

  22. Israel, H. et al. The 400d Galaxy Cluster Survey weak lensing programme. I. MMT/Megacam analysis of CL0030+2618 at z = 0.50. Astron. Astrophys. 520, A58 (2010)

    Article  Google Scholar 

  23. Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 380, 603–606 (1996)

    Article  CAS  ADS  Google Scholar 

  24. Yess, C. & Shandarin, S. F. Universality of the network and bubble topology in cosmological gravitational simulations. Astrophys. J. 465, 2–13 (1996)

    Article  ADS  Google Scholar 

  25. Springel, V., Frenk, C. S. & White, S. D. M. The large-scale structure of the Universe. Nature 440, 1137–1144 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Takei, Y. et al. Warm-hot intergalactic medium associated with the Coma Cluster. Astrophys. J. 655, 831–842 (2007)

    Article  CAS  ADS  Google Scholar 

  27. Dolag, K., Meneghetti, M., Moscardini, L., Rasia, E. & Bonaldi, A. Simulating the physical properties of dark matter and gas inside the cosmic web. Mon. Not. R. Astron. Soc. 370, 656–672 (2006)

    Article  CAS  ADS  Google Scholar 

  28. Gheller, C., Vazza, F., Favre, J. & Brüggen, M. Properties of cosmological filaments extracted from Eulerian simulations. Mon. Not. R. Astron. Soc. 453, 1164–1185 (2015)

    Article  CAS  ADS  Google Scholar 

  29. Snowden, S. L., Mushotzky, R. F., Kuntz, K. D. & Davis, D. S. A catalog of galaxy clusters observed by XMM-Newton. Astron. Astrophys. 478, 615–658 (2008)

    Article  ADS  Google Scholar 

  30. Moretti, A., Campana, S., Lazzati, D. & Tagliaferri, G. The resolved fraction of the cosmic X-ray background. Astrophys. J. 588, 696–703 (2003)

    Article  ADS  Google Scholar 

  31. Eckert, D., Molendi, S. & Paltani, S. The cool-core bias in X-ray galaxy cluster samples. I. Method and application to HIFLUGCS. Astron. Astrophys. 526, A79 (2011)

    Article  ADS  Google Scholar 

  32. Eckert, D. et al. The stripping of a galaxy group diving into the massive cluster A2142. Astron. Astrophys. 570, A119 (2014)

    Article  Google Scholar 

  33. Smith, R. K., Brickhouse, N. S., Liedahl, D. A. & Raymond, J. C. Collisional plasma models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. 556, L91–L95 (2001)

    CAS  ADS  Google Scholar 

  34. Leccardi, A. & Molendi, S. Radial metallicity profiles for a large sample of galaxy clusters observed with XMM-Newton. Astron. Astrophys. 487, 461–466 (2008)

    Article  ADS  CAS  Google Scholar 

  35. Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005)

    Article  CAS  ADS  Google Scholar 

  36. De Luca, A. & Molendi, S. The 2-8 keV cosmic X-ray background spectrum as observed with XMM-Newton. Astron. Astrophys. 419, 837–848 (2004)

    Article  CAS  ADS  Google Scholar 

  37. McCammon, D. et al. A high spectral resolution observation of the soft X-ray diffuse background with thermal detectors. Astrophys. J. 576, 188–203 (2002)

    Article  ADS  Google Scholar 

  38. Erben, T. et al. GaBoDS: The Garching-Bonn Deep Survey. IV. Methods for the image reduction of multi-chip cameras demonstrated on data from the ESO Wide-Field Imager. Astron. Nachr. 326, 432–464 (2005)

    Article  ADS  Google Scholar 

  39. Schirmer, M. THELI: convenient reduction of optical, near-infrared, and mid-infrared imaging data. Astrophys. J. Suppl. Ser. 209, 21 (2013)

    Article  ADS  Google Scholar 

  40. Erben, T. et al. CFHTLenS: the Canada-France-Hawaii Telescope Lensing Survey — imaging data and catalogue products. Mon. Not. R. Astron. Soc. 433, 2545–2563 (2013)

    Article  ADS  Google Scholar 

  41. Dietrich, J. P. et al. BLOX: the Bonn lensing, optical, and X-ray selected galaxy clusters. I. Cluster catalog construction. Astron. Astrophys. 470, 821–834 (2007)

    Article  CAS  ADS  Google Scholar 

  42. Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996)

    ADS  Google Scholar 

  43. Jauzac, M. et al. A weak lensing mass reconstruction of the large-scale filament feeding the massive galaxy cluster MACS J0717.5+3745. Mon. Not. R. Astron. Soc. 426, 3369–3384 (2012)

    Article  ADS  Google Scholar 

  44. Leauthaud, A. et al. Weak gravitational lensing with COSMOS: galaxy selection and shape measurements. Astrophys. J. Suppl. Ser. 172, 219–238 (2007)

    Article  ADS  Google Scholar 

  45. Casertano, S. et al. WFPC2 observations of the Hubble Deep Field South. Astron. J. 120, 2747–2824 (2000)

    Article  ADS  Google Scholar 

  46. Rhodes, J., Refregier, A. & Groth, E. J. Weak lensing measurements: a revisited method and application to Hubble Space Telescope images. Astrophys. J. 536, 79–100 (2000)

    Article  ADS  Google Scholar 

  47. Harvey, D., Massey, R., Kitching, T., Taylor, A. & Tittley, E. The nongravitational interactions of dark matter in colliding galaxy clusters. Science 347, 1462–1465 (2015)

    Article  CAS  ADS  PubMed  Google Scholar 

  48. Kaiser, N., Squires, G. & Broadhurst, T. A method for weak lensing observations. Astrophys. J. 449, 460–475 (1995)

    Article  ADS  Google Scholar 

  49. Shan, H. et al. Weak lensing measurement of galaxy clusters in the CFHTLS-Wide Survey. Astrophys. J. 748, 56 (2012)

    Article  ADS  Google Scholar 

  50. Luppino, G. A. & Kaiser, N. Detection of weak lensing by a cluster of galaxies at z = 0.83. Astrophys. J. 475, 20–28 (1997)

    Article  ADS  Google Scholar 

  51. Hoekstra, H., Franx, M. & Kuijken, K. Hubble Space Telescope weak-lensing study of the z = 0.83 cluster MS 1054-03. Astrophys. J. 532, 88–108 (2000)

    Article  ADS  Google Scholar 

  52. Jullo, E. et al. A Bayesian approach to strong lensing modelling of galaxy clusters. New J. Phys. 9, 447–478 (2007)

    Article  ADS  Google Scholar 

  53. Jauzac, M. et al. Hubble Frontier Fields: the geometry and dynamics of the massive galaxy cluster merger MACSJ0416.1-2403. Mon. Not. R. Astron. Soc. 446, 4132–4147 (2015)

    Article  CAS  ADS  Google Scholar 

  54. Jullo, E., Pires, S., Jauzac, M. & Kneib, J.-P. Weak lensing galaxy cluster field reconstruction. Mon. Not. R. Astron. Soc. 437, 3969–3979 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work reported here is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. D.E. thanks F. Vazza, S. Paltani and S. Molendi for discussions. We thank H. Ebeling, M. Limousin, B. Clément, H. Atek, D. Harvey, E. Egami, M. Rexroth and P. Natarajan for help with writing the XMM-Newton proposal. M.J., H.I. and R.M. acknowledge support from the UK Science and Technology Facilities Council (grant numbers ST/L00075X/1, ST/H005234/1), the Leverhulme trust (grant number PLP-2011-003) and the Royal Society. J.-P.K. acknowledges support from the ERC advanced grant LIDA and from CNRS. H.Y.S. acknowledges support by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme, and NSFC of China under grant 11103011. T.E. was supported by the Deutsche Forschungsgemeinschaft through the Transregional Collaborative Research Centre TR 33 ‘The Dark Universe’. E.J. was supported by CNES. J.R. acknowledges support from the ERC starting grant CALENDS.

Author information

Authors and Affiliations

Authors

Contributions

D.E.: lead author, X-ray analysis. M.J.: weak and strong lensing analysis. H.Y.S.: CFHT weak lensing analysis. J.-P.K.: principal investigator of the XMM-Newton observation, strong and weak lensing analysis and identification of the red cluster sequence in the photometric data. T.E.: WFI and CFHT data reduction. H.I.: WFI and CFHT data reduction. E.J.: weak and strong lensing modelling techniques. M.K.: WFI and CFHT data reduction. R.M.: weak lensing analysis. J.R.: strong lensing analysis. C.T.: X-ray analysis.

Corresponding author

Correspondence to Dominique Eckert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Radial X-ray emissivity profiles in the filaments and in the cluster.

Shown are XMM-Newton/EPIC surface-brightness profiles (SX); black, obtained by masking the filaments; colours, surface brightness in the sectors NW (northwest, position angle 10°–70°), E (east, 150°–180°) and S (south, 260°–300°). Uncertainties (error bars) are given at the 1σ level.

Extended Data Figure 2 Regions used for the analysis of the thermodynamic properties of the filaments.

The 0.5–2 keV surface brightness level is colour coded (bar at right; units are erg s−1 cm−2 arcmin−2); right ascension and declination are in degrees. Spectra were extracted from the regions indicated as E, S, SW, NW1 and NW2 by the white ellipses. The green circles show the regions labelled as Offset1–4 used to estimate the local background components (see Extended Data Table 1). The dashed cyan sectors show the regions used to extract the radial profiles along the filaments for Extended Data Figs 1, 3 and 5. The grey ellipses show background/foreground structures masked during the analysis (see text).

Extended Data Figure 3 Radial galaxy density profiles in the filaments and in the cluster.

Galaxy density profiles (Ngal) using spectroscopically confirmed cluster members in sectors encompassing the filaments (same as Extended Data Fig. 1) are compared to the galaxy density of the cluster obtained by masking the filaments (black). Uncertainties (error bars) are given at the 1σ level.

Extended Data Figure 4 X-ray spectra of the filaments.

af, XMM-Newton/EPIC-pn spectra for the regions shown in Extended Data Fig. 2. The background region (a) refers to Offset1. The fitting procedure was performed jointly on all EPIC instruments; however, only the pn spectra are shown here for clarity. The coloured lines show fitted contributions from the source (red), the NXB (blue), the CXB (green), the Galactic halo (cyan), and the local hot bubble (magenta).

Extended Data Figure 5 Radial mass profiles in the filaments and in the cluster.

Shown are surface mass density profiles obtained from combined strong and weak lensing. The black curve shows the cluster average, compared to the profiles obtained in the direction of the filaments (same as Extended Data Fig. 1).

Extended Data Table 1 Properties of the X-ray background in the Abell 2744 region
Extended Data Table 2 Mass of the filaments

Related audio

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckert, D., Jauzac, M., Shan, H. et al. Warm–hot baryons comprise 5–10 per cent of filaments in the cosmic web. Nature 528, 105–107 (2015). https://doi.org/10.1038/nature16058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature16058

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing