Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Condensed-matter physics

Quantum dots and the Kondo effect

Nanotechnology studies explore the extreme properties of strongly interacting electronic systems through conductance measurements, and probe quantum phase transitions close to absolute zero temperature. See Letters p.233 & p.237

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strongly interacting electronic systems.

Notes

  1. See all news & views

References

  1. Kondo, J. Prog. Theor. Phys. 32, 37–49 (1964).

    Article  ADS  CAS  Google Scholar 

  2. Nozières, P. J. Low Temp. Phys. 17, 31–42 (1974).

    Article  ADS  Google Scholar 

  3. Kouwenhoven, L. & Glazman, L. Phys. World 14(1), 33–38 (2001).

    Article  CAS  Google Scholar 

  4. Iftikhar, Z. et al. Nature 526, 233–236 (2015).

    Article  ADS  CAS  Google Scholar 

  5. Keller, A. J. et al. Nature 526, 237–240 (2015).

    Article  ADS  CAS  Google Scholar 

  6. Nozières, P. & Blandin, A. J. Phys. 41, 193–211 (1980).

    Article  Google Scholar 

  7. Sachdev, S. Quantum Phase Transitions 2nd edn (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  8. Cox, D. L. & Zawadowski, A. Adv. Phys. 47, 599–942 (1998).

    Article  CAS  Google Scholar 

  9. Matveev, K. A. Sov. Phys. JETP 72, 892–899 (1991).

    Google Scholar 

  10. Furusaki, A. K. & Matveev, A. Phys. Rev. B 52, 16676 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Le Hur, K. & Seelig, G. Phys. Rev. B 65, 165338 (2002).

    Article  ADS  Google Scholar 

  12. Potok, R., Rau, I. G., Shtrikman, H., Oreg, Y. & Goldhaber-Gordon, D. Nature 446, 167–171 (2007).

    Article  ADS  CAS  Google Scholar 

  13. Affleck, I. & Ludwig, A. W. W. Phys. Rev. B 48, 7297–7321 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Sela, E., Mitchell, A. K. & Fritz, L. Phys. Rev. Lett. 106, 147202 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karyn Le Hur.

Related links

Related links

Related links in Nature Research

Condensed-matter Physics: Flat transistor defies the limit

Condensed-matter physics: Charge topology in superconductors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Hur, K. Quantum dots and the Kondo effect. Nature 526, 203–204 (2015). https://doi.org/10.1038/526203a

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/526203a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing