A concise synthesis of (+)-batzelladine B from simple pyrrole-based starting materials

Journal name:
Nature
Volume:
525,
Pages:
507–510
Date published:
DOI:
doi:10.1038/nature14902
Received
Accepted
Published online

Alkaloids, secondary metabolites that contain basic nitrogen atoms, are some of the most well-known biologically active natural products in chemistry and medicine1. Although efficient laboratory synthesis of alkaloids would enable the study and optimization of their biological properties2, their preparation is often complicated by the basicity and nucleophilicity of nitrogen, its susceptibility to oxidation, and its ability to alter reaction outcomes in unexpected ways—for example, through stereochemical instability and neighbouring group participation. Efforts to address these issues have led to the invention of a large number of protecting groups that temper the reactivity of nitrogen3; however, the use of protecting groups typically introduces additional steps and obstacles into the synthetic route. Alternatively, the use of aromatic nitrogen heterocycles as synthetic precursors can attenuate the reactivity of nitrogen and streamline synthetic strategies4. Here we use such an approach to achieve a synthesis of the complex anti-HIV alkaloid (+)-batzelladine B in nine steps (longest linear sequence) from simple pyrrole-based starting materials. The route uses several key transformations that would be challenging or impossible to implement using saturated nitrogen heterocycles and highlights some of the advantages of beginning with aromatic reagents.

At a glance

Figures

  1. Structure and synthetic analysis of (+)-batzelladine B (1).
    Figure 1: Structure and synthetic analysis of (+)-batzelladine B (1).

    a, The chemical structures of (+)-batzelladine B (1) and (+)-batzelladine A (2), with embedded pyrrole substructures shown. b, The strategy we used produces the vessel and anchor substructures of 1 (5 and 8, respectively) from the pyrrole-based starting materials 3 and 6, via the intermediates 4 and 7.

  2. Synthesis of the vessel fragment of (+)-batzelladine B (1) and determination of its stereochemistry.
    Figure 2: Synthesis of the vessel fragment of (+)-batzelladine B (1) and determination of its stereochemistry.

    a, Synthesis of the vessel precursor 17. Reagents and conditions: (1) Rh2[(S)-pttl]4 (0.5 mol%), pentane, 36 °C, 93%, >95:5 d.r., or Rh2[(S)-pttl]4 (0.1 mol%), pentane, 36 °C, 87%, >95:5 d.r.; (2) H2 (30 atm), ClRh(PPh3)3 (2.0 mol%), i-PrOH, 23 °C; (3) tetra-n-butylammonium fluoride (TBAF), TMS-EBX, THF–CH2Cl2 (8:1), −78 °C, 80% (from 3 + 9); (4) n-BuLi, then lithium benzyl octanoate, THF, then DMPU, −78 °C; (5) H2 (1 atm), Pd/C (10 mol%), THF, 23 °C, 49% (two steps); and (6) LiOH, THF–H2O (2:1), 0 °C, 75%. b, The relative stereochemistry of 12 was established by cyclization and deprotection, followed by X-ray analysis. Reagents and conditions: (7) AgOAc, AcOH, CH2Cl2, 24 °C, >99% and (8) TFA, CH2Cl2, 0–23 °C, >99%.

  3. Synthesis of the anchor fragment of (+)-batzelladine B (1).
    Figure 3: Synthesis of the anchor fragment of (+)-batzelladine B (1).

    Reagents and conditions: (1) LDA, Ti(Oi-Pr)3Cl, THF, −78 °C, 99%, >20:1 mixture of C1 stereoisomers, approximately 94:6 mixture of C2 stereoisomers; (2) HCl, CH3OH–1,4-dioxane (4.4:1), 0 °C; (3) (ClSnBu2)2O, toluene, 100 °C, 78% (two steps); (4) EtOTf, 2,4,6-tri-tert-butyl-pyrimidine, CH2Cl2, 23 °C, 90%; (5) DMBNH3Cl, 3 Å molecular sieves, EtOH, 70 °C, 71%; (6) TMSOTf, 2,6-lutidine, CH2Cl2, 0–23 °C, then 24, 4-(dimethylamino)pyridine (DMAP), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)·HCl, CH2Cl2, 0–23 °C, 75%; and (7) 26 (15 mol%), PTSA (1.0 equiv.), HCO2H, N-methyl-2-pyrrolidinone (NMP)–H2O (4:1), 23 °C, 71%.

  4. Coupling of 17 and 27 and completion of the synthesis of (+)-batzelladine B (1).
    Figure 4: Coupling of 17 and 27 and completion of the synthesis of (+)-batzelladine B (1).

    Reagents and conditions: (1) EDC·HCl, DMAP, CH2Cl2, 24 °C, 77% and (2) TFA, Pd/C, argon, 0 °C, then H2, 24 °C, 45% (NMR), 40% (isolated).

References

  1. Roberts, M.F. & Wink, M. (eds) Alkaloids: Biochemistry, Ecology, and Medicinal Applications (Plenum, 1998)
  2. Wender, P. A. & Miller, B. L. Synthesis at the molecular frontier. Nature 460, 197201 (2009)
  3. Greene, T. W. & Wuts, P. G. M. Protective Groups in Organic Synthesis 3rd edn, Ch. 7 (Wiley, 1999)
  4. Lipshutz, B. H. Five-membered heteroaromatic rings as intermediates in organic synthesis. Chem. Rev. 86, 795819 (1986)
  5. Crampton, R. M. & Robotham, I. A. Acidities of some substituted ammonium ions in dimethyl sulfoxide. J. Chem. Res. Synop. 2223 (1997)
  6. Mayr, H. & Ofial, A. R. Kinetics of electrophile-nucleophile combinations: a general approach to polar organic reactivity. Pure Appl. Chem. 77, 18071821 (2005)
  7. Bordwell, F. G. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 21, 456463 (1988)
  8. Chen, K. & Baran, P. S. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 459, 824828 (2009)
  9. Patil, A. D. et al. Novel alkaloids from the sponge Batzella sp.: inhibitors of HIV gp120-human CD4 binding. J. Org. Chem. 60, 11821188 (1995)
  10. Patil, A. D. et al. Batzelladines F−I, novel alkaloids from the sponge Batzella sp.: inducers of p56lck-CD4 dissociation. J. Org. Chem. 62, 18141819 (1997)
  11. Hua, H.-M. et al. Batzelladine alkaloids from the Caribbean sponge Monanchora unguifera and the significant activities against HIV-1 and AIDS opportunistic infectious pathogens. Tetrahedron 63, 1117911188 (2007)
  12. Laville, R. et al. Bioactive guanidine alkaloids from two Caribbean marine sponges. J. Nat. Prod. 72, 15891594 (2009)
  13. Franklin, A. S., Ly, S. K., Mackin, G. H., Overman, L. E. & Shaka, A. J. Application of the tethered Biginelli reaction for enantioselective synthesis of batzelladine alkaloids. Absolute configuration of the tricyclic guanidine portion of batzelladine B. J. Org. Chem. 64, 15121519 (1999)
  14. Duron, S. G. & Gin, D. Y. Synthesis and determination of absolute configuration of the bicyclic guanidine core of batzelladine A. Org. Lett. 3, 15511554 (2001)
  15. Snider, B. B., Chen, J., Patil, A. D. & Freyer, A. J. Synthesis of the tricyclic portions of batzelladines A, B and D. Revision of the stereochemistry of batzelladines A and D. Tetrahedron Lett. 37, 69776980 (1996)
  16. Shimokawa, J., Shirai, K., Tanatani, A., Hashimoto, Y. & Nagasawa, K. Enantioselective total synthesis of batzelladine A. Angew. Chem. Int. Ed. 43, 15591562 (2004)
  17. Arnold, M. A., Day, K. A., Durón, S. G. & Gin, D. Y. Total synthesis of (+)-batzelladine A and (−)-batzelladine D via [4 + 2]-annulation of vinyl carbodiimides with N-alkyl imines. J. Am. Chem. Soc. 128, 1325513260 (2006)
  18. Cohen, F. & Overman, L. E. Evolution of a strategy for the synthesis of structurally complex batzelladine alkaloids. Enantioselective total synthesis of the proposed structure of batzelladine F and structural revision. J. Am. Chem. Soc. 128, 25942603 (2006)
  19. Cohen, F. & Overman, L. E. Enantioselective total synthesis of batzelladine F and definition of its structure. J. Am. Chem. Soc. 128, 26042608 (2006)
  20. Evans, P. A., Qin, J., Robinson, J. E. & Bazin, B. Enantioselective total synthesis of the polycyclic guanidine-containing marine alkaloid (−)-batzelladine D. Angew. Chem. Int. Ed. 46, 74177419 (2007)
  21. Butters, M. et al. Synthesis and stereochemical determination of batzelladine C methyl ester. Org. Biomol. Chem. 7, 50015009 (2009)
  22. Babij, N. R. & Wolfe, J. P. Asymmetric total synthesis of (+)-merobatzelladine B. Angew. Chem. Int. Ed. 51, 41284130 (2012)
  23. Aron, Z. D. & Overman, L. E. The tethered Biginelli condensation in natural product synthesis. Chem. Commun. 253265 (2004)
  24. Reddy, R. P. & Davies, H. M. L. Asymmetric synthesis of tropanes by rhodium-catalyzed [4 + 3] cycloaddition. J. Am. Chem. Soc. 129, 1031210313 (2007)
  25. Tang, T. P. & Ellman, J. A. Asymmetric synthesis of β-amino acid derivatives incorporating a broad range of substitution patterns by enolate additions to tert-butanesulfinyl imines. J. Org. Chem. 67, 78197832 (2002)
  26. Davies, H. M. L., Ahmed, G. & Churchill, M. R. Asymmetric synthesis of highly functionalized 8-oxabicyclo[3.2.1]octene derivatives. J. Am. Chem. Soc. 118, 1077410782 (1996)
  27. Masamune, S., Choy, W., Petersen, J. S. & Sita, L. R. Double asymmetric synthesis and a new strategy for stereochemical control in organic synthesis. Angew. Chem. Int. Ed. 24, 130 (1985)
  28. Fernández González, D., Brand, J. P. & Waser, J. Ethynyl-1,2-benziodoxol-3(1 H)-one (EBX): an exceptional reagent for the ethynylation of keto, cyano, and nitro esters. Chem. Eur. J. 16, 94579461 (2010)
  29. Gainer, M. J., Bennett, N. R., Takahashi, Y. & Looper, R. E. Regioselective rhodium(II)-catalyzed hydroaminations of propargylguanidines. Angew. Chem. Int. Ed. 50, 684687 (2011)
  30. Zeng, M., Li, L. & Herzon, S. B. A highly active and air-stable ruthenium complex for the ambient temperature anti-Markovnikov reductive hydration of terminal alkynes. J. Am. Chem. Soc. 136, 70587067 (2014)

Download references

Author information

Affiliations

  1. Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA

    • Brendan T. Parr,
    • Christos Economou &
    • Seth B. Herzon

Contributions

B.T.P. and C.E. performed and analysed the experiments. All authors contributed to the design of experiments and composition of the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Crystallographic data for 19 have been deposited at the Cambridge Crystallographic Data Centre as CCDC 1400311.

Author details

Supplementary information

PDF files

  1. Supplementary Information (8.5 MB)

    This file contains Supplementary Tables 1-8, Supplementary Text and Data and a Supplementary Bibliography – see contents page for details.

Additional data