Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global separation of plant transpiration from groundwater and streamflow

Abstract

Current land surface models assume that groundwater, streamflow and plant transpiration are all sourced and mediated by the same well mixed water reservoir—the soil. However, recent work in Oregon1 and Mexico2 has shown evidence of ecohydrological separation, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the combined fluxes of groundwater and streamflow. These findings have not yet been widely tested. Here we use hydrogen and oxygen isotopic data (2H/1H (δ2H) and 18O/16O (δ18O)) from 47 globally distributed sites to show that ecohydrological separation is widespread across different biomes. Precipitation, stream water and groundwater from each site plot approximately along the δ2H/δ18O slope of local precipitation inputs. But soil and plant xylem waters extracted from the 47 sites all plot below the local stream water and groundwater on the meteoric water line, suggesting that plants use soil water that does not itself contribute to groundwater recharge or streamflow. Our results further show that, at 80% of the sites, the precipitation that supplies groundwater recharge and streamflow is different from the water that supplies parts of soil water recharge and plant transpiration. The ubiquity of subsurface water compartmentalization found here, and the segregation of storm types relative to hydrological and ecological fluxes, may be used to improve numerical simulations of runoff generation, stream water transit time and evaporation–transpiration partitioning. Future land surface model parameterizations should be closely examined for how vegetation, groundwater recharge and streamflow are assumed to be coupled.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: δ18O and δ2H values of groundwater, stream water, plant xylem water and soil water at 47 globally distributed sites.
Figure 2: Precipitation offset values of groundwater, stream water, plant xylem water and soil water for 47 sites grouped by biome.

Similar content being viewed by others

References

  1. Brooks, J. R., Barnard, H. R., Coulombe, R. & McDonnell, J. J. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geosci. 3, 100–104 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Goldsmith, G. R. et al. Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest. Ecohydrol. 5, 779–790 (2012)

    Article  CAS  Google Scholar 

  3. Schlesinger, W. H. & Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 189, 115–117 (2014)

    Article  ADS  Google Scholar 

  4. Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. Hydrometeorol. 3, 660–687 (2002)

    Article  ADS  Google Scholar 

  6. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Wada, Y., Van Beek, L. P. H., Wanders, N. & Bierkens, M. F. P. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 034036 (2013)

    Article  ADS  Google Scholar 

  8. Yakir, D. & Wang, X.-F. Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 380, 515–517 (1996)

    Article  ADS  CAS  Google Scholar 

  9. International Atomic Energy Agency’s Water Resources Programme http://www.iaea.org/water/ (2014)

  10. Levin, N. E., Zipser, E. J. & Cerling, T. E. Isotopic composition of waters from Ethiopia and Kenya: Insights into moisture sources for eastern Africa. J. Geophys. Res. D 114, D23306 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Jasechko, S. et al. The pronounced seasonality of global groundwater recharge. Wat. Resour. Res. 50, 8845–8867 (2014)

    Article  ADS  Google Scholar 

  12. Birkel, C., Tetzlaff, D., Dunn, S. M. & Soulsby, C. Towards a simple dynamic process conceptualization in rainfall-runoff models using multi-criteria calibration and tracers in temperate, upland catchments. Hydrol. Processes 24, 260–275 (2010)

    Article  Google Scholar 

  13. Friedman, I. Deuterium content of natural waters and other substances. Geochim. Cosmochim. Acta 4, 89–103 (1953)

    Article  ADS  CAS  Google Scholar 

  14. Craig, H. Isotopic variations in meteoric waters. Science 133, 1702–1703 (1961)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Dutton, A. R. Groundwater isotopic evidence for paleorecharge in U.S. High Plains aquifers. Quat. Res. 43, 221–231 (1995)

    Article  CAS  Google Scholar 

  16. Landwehr, J. & Coplen, T. in Isotopes in Environmental Studies 132–135 (IAEA-CN-118/56, International Atomic Energy Agency, 2006)

    Google Scholar 

  17. Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964)

    Article  ADS  Google Scholar 

  18. Taylor, R. G. et al. Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nature Clim. Change 3, 374–378 (2013)

    Article  ADS  Google Scholar 

  19. Scholl, M. A. & Murphy, S. F. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico. Wat. Resour. Res. 50, 4305–4322 (2014)

    Article  ADS  Google Scholar 

  20. Good, S. P. et al. Patterns of local and nonlocal water resource use across the western US determined via stable isotope intercomparisons. Wat. Resour. Res. 50, 8034–8049 (2014)

    Article  ADS  Google Scholar 

  21. Syed, T. H., Famiglietti, J. S., Zlotnicki, V. & Rodell, M. Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys. Res. Lett. 34, L19404 (2007)

    Article  ADS  Google Scholar 

  22. Ferguson, P. R., Weinrauch, N., Wassenaar, L. I., Mayer, B. & Veizer, J. Isotope constraints on water, carbon, and heat fluxes from the northern Great Plains region of North America. Glob. Biogeochem. Cycles 21, GB2023 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Gibson, J. J. & Edwards, T. W. D. Regional water balance trends and evaporation-transpiration partitioning from a stable isotope survey of lakes in northern Canada. Glob. Biogeochem. Cycles 16, 10-1-10-14 (2002)

    Article  CAS  Google Scholar 

  24. Dirmeyer, P. A. et al. GSWP-2: multimodel analysis and implications for our perceptions of the land surface. Bull. Am. Meteorol. Soc. 87, 1381–1397 (2006)

    Article  ADS  Google Scholar 

  25. Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle—part 1: temporal characteristics over land. Earth Syst. Dyn. 5, 441–469 (2014)

    Article  ADS  Google Scholar 

  26. Aemisegger, F. et al. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmos. Chem. Phys. 14, 4029–4054 (2014)

    Article  ADS  CAS  Google Scholar 

  27. Sutanto, S. J. et al. A perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation. Hydrol. Earth Syst. Sci. 18, 2815–2827 (2014)

    Article  ADS  Google Scholar 

  28. Lawrence, D. M., Thornton, P. E., Oleson, K. W. & Bonan, G. B. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land-atmosphere interaction. J. Hydrometeorol. 8, 862–880 (2007)

    Article  ADS  Google Scholar 

  29. Gouet-Kaplan, M., Tartakovsky, A. & Berkowitz, B. Simulation of the interplay between resident and infiltrating water in partially saturated porous media. Wat. Resour. Res. 45, W05416 (2009)

    Article  ADS  Google Scholar 

  30. Stöckli, R., Vidale, P. L., Boone, A. & Schär, C. Impact of scale and aggregation on the terrestrial water exchange: integrating land surface models and Rhône catchment observations. J. Hydrometeorol. 8, 1002–1015 (2007)

    Article  ADS  Google Scholar 

  31. McDonnell, J. J. The two water worlds hypothesis: ecohydrological separation of water between streams and trees? WIREs Water 1, 323–329 (2014)

    Article  Google Scholar 

  32. Darling, W. G., Bath, A. H. & Talbot, J. C. The O and H stable isotopic composition of fresh waters in the British Isles. 2. Surface waters and groundwater. Hydrol. Earth Syst. Sci. 7, 183–195 (2003)

    Article  ADS  CAS  Google Scholar 

  33. Genty, D. et al. Rainfall and cave water isotopic relationships in two South-France sites. Geochim. Cosmochim. Acta 131, 323–343 (2014)

    Article  ADS  CAS  Google Scholar 

  34. Wu, C. Jackknife, bootstrap and other resampling methods in regression analysis—discussion. Ann. Stat. 14, 1261–1295 (1986)

    Article  MATH  Google Scholar 

  35. van der Velde, Y., Torfs, P. J. J. F., van der Zee, S. E. A. T. M. & Uijlenhoet, R. Quantifying catchment-scale mixing and its effects on time-varying travel time distributions. Wat. Resour. Res. 48, W06536 (2012)

    Article  ADS  Google Scholar 

  36. Page, T., Beven, K. J., Freer, J. & Neal, C. Modelling the chloride signal at Plynlimon, Wales, using a modified dynamic TOPMODEL incorporating conservative chemical mixing (with uncertainty). Hydrol. Processes 21, 292–307 (2007)

    Article  ADS  CAS  Google Scholar 

  37. Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D. & Soulsby, C. What can flux tracking teach us about water age distribution patterns and their temporal dynamics? Hydrol. Earth Syst. Sci. 17, 533–564 (2013)

    Article  ADS  Google Scholar 

  38. Legout, C. et al. Solute transfer in the unsaturated zone-groundwater continuum of a headwater catchment. J. Hydrol. 332, 427–441 (2007)

    Article  ADS  Google Scholar 

  39. Klaus, J., Zehe, E., Elsner, M., Külls, C. & McDonnell, J. J. Macropore flow of old water revisited: experimental insights from a tile-drained hillslope. Hydrol. Earth Syst. Sci. 17, 103–118 (2013)

    Article  ADS  Google Scholar 

  40. Or, D., Lehmann, P., Shahraeeni, E. & Shokri, N. Advances in soil evaporation physics—a review. Vadose Zone J. 12(4), http://dx.doi.org/10.2136/vzj2012.0163 (2013)

  41. Oerter, E. et al. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals. J. Hydrol. 515, 1–9 (2014)

    Article  ADS  CAS  Google Scholar 

  42. Meissner, M., Koehler, M., Schwendenmann, L., Hoelscher, D. & Dyckmans, J. Soil water uptake by trees using water stable isotopes (δ2H and δ18O)–a method test regarding soil moisture, texture and carbonate. Plant Soil 376, 327–335 (2014)

    Article  CAS  Google Scholar 

  43. Orlowski, N., Frede, H., Brüggemann, N. & Breuer, L. Validation and application of a cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis. J. Sensors Sensor Syst. 2, 179–193 (2013)

    Article  Google Scholar 

  44. Bowen, G. J. & Wilkinson, B. Spatial distribution of δ18O in meteoric precipitation. Geology 30, 315–318 (2002)

    Article  ADS  Google Scholar 

  45. Kendall, C. & Coplen, T. B. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol. Processes 15, 1363–1393 (2001)

    Article  ADS  Google Scholar 

  46. Boutton, T. W., Archer, S. R. & Midwood, A. J. Stable isotopes in ecosystem science: structure, function and dynamics of a subtropical savanna. Rapid Commun. Mass Spectrom. 13, 1263–1277 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  47. McKeon, C. et al. Growth and water and nitrate uptake patterns of grazed and ungrazed desert shrubs growing over a nitrate contamination plume. J. Arid Environ. 64, 1–21 (2006)

    Article  ADS  Google Scholar 

  48. Snyder, K. A. & Williams, D. G. Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agric. For. Meteorol. 105, 227–240 (2000)

    Article  ADS  Google Scholar 

  49. Williams, D. G. & Ehleringer, J. R. Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecol. Monogr. 70, 517–537 (2000)

    Google Scholar 

  50. Zhou, Y.-D., Chen, S.-P., Song, W.-M., Lu, Q. & Lin, G.-H. Water-use strategies of two desert plants along a precipitation gradient in northwestern China. Chinese J. Plant Ecol. 35, 789–800 (2011)

    Article  ADS  Google Scholar 

  51. Hai, Z., Xin-Jun, Z., Li-Song, T. & Yan, L. Differences and similarities between water sources of Tamarix ramosissima, Nitraria sibirica and Reaumuria soongorica in the southeastern Junggar Basin. Chinese J. Plant Ecol. 37, 665–673 (2013)

    Article  Google Scholar 

  52. Lin, Z., Xing, X. & Gui-Lian, M. Water sources of shrubs grown in the northern Ningxia Plain of China characterized by shallow groundwater table. Chinese J. Plant Ecol. 36, 618–628 (2012)

    ADS  Google Scholar 

  53. Bijoor, N. S., McCarthy, H. R., Zhang, D. & Pataki, D. E. Water sources of urban trees in the Los Angeles metropolitan area. Urban Ecosyst. 15, 195–214 (2012)

    Article  Google Scholar 

  54. February, E. C., West, A. G. & Newton, R. J. The relationship between rainfall, water source and growth for an endangered tree. Austral Ecol. 32, 397–402 (2007)

    Article  Google Scholar 

  55. Kurz-Besson, C. et al. Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant Soil 282, 361–378 (2006)

    Article  CAS  Google Scholar 

  56. Swaffer, B. A., Holland, K. L., Doody, T. M., Li, C. & Hutson, J. Water use strategies of two co-occurring tree species in a semi-arid karst environment. Hydrol. Processes 28, 2003–2017 (2014)

    Article  ADS  Google Scholar 

  57. West, A. G. et al. Diverse functional responses to drought in a Mediterranean-type shrubland in South Africa. New Phytol. 195, 396–407 (2012)

    Article  CAS  PubMed  Google Scholar 

  58. Ohte, N. et al. Water utilization of natural and planted trees in the semiarid desert of Inner Mongolia, China. Ecol. Appl. 13, 337–351 (2003)

    Article  Google Scholar 

  59. Sun, S., Huang, J., Han, X. & Lin, G. Comparisons in water relations of plants between newly formed riparian and non-riparian habitats along the bank of Three Gorges Reservoir, China. Trees Struct. Funct. 22, 717–728 (2008)

    Article  Google Scholar 

  60. Berry, Z. C., Hughes, N. M. & Smith, W. K. Cloud immersion: an important water source for spruce and fir saplings in the southern Appalachian Mountains. Oecologia 174, 319–326 (2014)

    Article  ADS  PubMed  Google Scholar 

  61. Jia, G., Yu, X., Deng, W., Liu, Y. & Li, Y. Determination of minimum extraction times for water of plants and soils used in isotopic analysis. J. Food Agric. Environ. 10, 1035–1040 (2012)

    CAS  Google Scholar 

  62. Rong, L., Chen, X., Chen, X., Wang, S. & Du, X. Isotopic analysis of water sources of mountainous plant uptake in a karst plateau of southwest China. Hydrol. Processes 25, 3666–3675 (2011)

    Article  ADS  Google Scholar 

  63. Tang, K. L. & Feng, X. H. The effect of soil hydrology on the oxygen and hydrogen isotopic compositions of plants' source water. Earth Planet. Sci. Lett. 185, 355–367 (2001)

    Article  ADS  CAS  Google Scholar 

  64. Wang, P., Song, X., Han, D., Zhang, Y. & Liu, X. A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: a case in Shanxi Province, China. Agric. Water Manage. 97, 475–482 (2010)

    Article  Google Scholar 

  65. Wei, Y. F., Fang, J., Liu, S., Zhao, X. Y. & Li, S. G. Stable isotopic observation of water use sources of Pinus sylvestris var. mongolica in Horqin Sandy Land, China. Trees Struct. Funct. 27, 1249–1260 (2013)

    Article  Google Scholar 

  66. Wei, L., Lockington, D. A., Poh, S., Gasparon, M. & Lovelock, C. E. Water use patterns of estuarine vegetation in a tidal creek system. Oecologia 172, 485–494 (2013)

    Article  ADS  PubMed  Google Scholar 

  67. Zhang, W. et al. Using stable isotopes to determine the water sources in alpine ecosystems on the east Qinghai-Tibet plateau, China. Hydrol. Processes 24, 3270–3280 (2010)

    Article  ADS  CAS  Google Scholar 

  68. Anderegg, L. D. L., Anderegg, W. R. L., Abatzoglou, J., Hausladen, A. M. & Berry, J. A. Drought characteristics’ role in widespread aspen forest mortality across Colorado, USA. Glob. Change Biol. 19, 1526–1537 (2013)

    Article  ADS  Google Scholar 

  69. Berkelhammer, M. et al. The nocturnal water cycle in an open-canopy forest. J. Geophys. Res. D 118, 10225–10242 (2013)

    ADS  Google Scholar 

  70. Bertrand, G. et al. Determination of spatiotemporal variability of tree water uptake using stable isotopes (δ18O, δ2H) in an alluvial system supplied by a high-altitude watershed, Pfyn forest, Switzerland. Ecohydrol. 7, 319–333 (2014)

    Article  CAS  Google Scholar 

  71. Liu, Y. et al. Analyzing relationships among water uptake patterns, rootlet biomass distribution and soil water content profile in a subalpine shrubland using water isotopes. Eur. J. Soil Biol. 47, 380–386 (2011)

    Article  Google Scholar 

  72. Penna, D. et al. Tracing the water sources of trees and streams: isotopic analysis in a small pre-alpine catchment. Proc. Env. Sci. 19, 106–112 (2013)

    Article  CAS  Google Scholar 

  73. Phillips, S. L. & Ehleringer, J. R. Limited uptake of summer precipitation by bigtooth maple (Acer grandidentatum Nutt) and Gambel's Oak (Quercus gambelii Nutt). Trees Struct. Funct. 9, 214–219 (1995)

    Article  Google Scholar 

  74. Rose, K. L., Graham, R. C. & Parker, D. R. Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock. Oecologia 134, 46–54 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Brunel, J. P., Walker, G. R. & Kennettsmith, A. K. Field validation of isotopic procedures for determining sources of water used by plants in a semiarid environment. J. Hydrol. 167, 351–368 (1995)

    Article  ADS  CAS  Google Scholar 

  76. Clinton, B. D., Vose, J. M., Vroblesky, D. A. & Harvey, G. J. Determination of the relative uptake of ground vs. surface water by Populus deltoides during phytoremediation. Int. J. Phytoremed. 6, 239–252 (2004)

    Article  CAS  Google Scholar 

  77. Eggemeyer, K. D. et al. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C(4) grasses in a semiarid grassland. Tree Physiol. 29, 157–169 (2009)

    Article  CAS  PubMed  Google Scholar 

  78. Holland, K. L., Tyerman, S. D., Mensforth, L. J. & Walker, G. R. Tree water sources over shallow, saline groundwater in the lower River Murray, south-eastern Australia: implications for groundwater recharge mechanisms. Aust. J. Bot. 54, 193–205 (2006)

    Article  Google Scholar 

  79. Kukowski, K. R., Schwinning, S. & Schwartz, B. F. Hydraulic responses to extreme drought conditions in three co-dominant tree species in shallow soil over bedrock. Oecologia 171, 819–830 (2013)

    Article  ADS  PubMed  Google Scholar 

  80. McCole, A. A. & Stern, L. A. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water. J. Hydrol. 342, 238–248 (2007)

    Article  ADS  Google Scholar 

  81. Mensforth, L. J., Thorburn, P. J., Tyerman, S. D. & Walker, G. R. Sources of water used by riparian Eucalyptus-Camaldulensis overlying highly saline groundwater. Oecologia 100, 21–28 (1994)

    Article  ADS  PubMed  Google Scholar 

  82. Hartsough, P., Poulson, S. R., Biondi, F. & Estrada, I. G. Stable isotope characterization of the ecohydrological cycle at a tropical treeline site. Arct. Antarct. Alp. Res. 40, 343–354 (2008)

    Article  Google Scholar 

  83. Brunel, J. P., Walker, G. R., Dighton, J. C. & Monteny, B. Use of stable isotopes of water to determine the origin of water used by the vegetation and to partition evapotranspiration. A case study from HAPEX-Sahel. J. Hydrol. (Amst.) 188–189, 466–481 (1997)

    Article  Google Scholar 

  84. February, E. C., Higgins, S. I., Newton, R. & West, A. G. Tree distribution on a steep environmental gradient in an arid savanna. J. Biogeogr. 34, 270–278 (2007)

    Article  Google Scholar 

  85. Garcin, Y. et al. Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology: insights from a calibration transect across Cameroon. Geochim. Cosmochim. Acta 79, 106–126 (2012)

    Article  ADS  CAS  Google Scholar 

  86. Deng, Y., Jiang, Z. & Qin, X. Water source partitioning among trees growing on carbonate rock in a subtropical region of Guangxi, China. Env. Earth Sci. 66, 635–640 (2012)

    Article  Google Scholar 

  87. Evaristo, J. A., McDonnell, J. J. & Scholl, M. A. Evidence for ecohydrological separation across contrasting sites in a wet tropical low seasonality catchment. Hydrol. Processes (submitted)

  88. Nie, Y. et al. Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant Soil 341, 399–412 (2011)

    Article  CAS  Google Scholar 

  89. Rosado, B. H. P., De Mattos, E. A. & Sternberg, L. D. S. L. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species? An. Acad. Bras. Cienc. 85, 1035–1045 (2013)

    Article  PubMed  Google Scholar 

  90. Schwendenmann, L., Pendall, E., Sanchex-Bragado, R., Kunert, N. & Holsher, D. Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrol. 8, 1–12 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

J.E. thanks the Saskatchewan Innovation and Opportunity Scholarship, Global Institute for Water Security, and School of Environment and Sustainability (University of Saskatchewan) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.J.M. conceived the idea of testing the ecohydrological compartmentalization hypothesis with global data. J.E., S.J. and J.J.M. brainstormed on how to do this. J.E. designed the approach, compiled the data set, and conducted the statistical analyses. J.E. wrote the first paper draft. S.J. and J.J.M. edited and commented on the manuscript and contributed to the text in later iterations.

Corresponding author

Correspondence to Jaivime Evaristo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Schematic representation of tracing the isotopic composition of source precipitation.

Plant xylem water isotopic values plot on a linear regression called the evaporation line. The point on the local meteoric water line (LMWL) where the plant xylem water evaporation line intersects provide a good approximation of the mean isotopic value of plant xylem source precipitation. The same method is used in tracing the soil water δ source value.

Extended Data Figure 2 Tracing the isotopic composition of plant xylem source precipitation versus mean groundwater value.

Plant xylem water (grey triangles, n = 88) plotted in δ18O–δ2H space. Shown are the mean plant xylem source precipitation value (green triangle with error bars, ±1 s.d., n = 88), mean groundwater value (blue circle with error bars, ±1 s.d., n = 271), amount-weighted average precipitation (yellow star), GMWL (solid black line) and LMWL (dashed black line). This is an example of a case in Oregon, USA (ref. 1) where mean groundwater isotope value is more positive than plant xylem source precipitation value. This is the case in 41 of 47 sites in our database.

Source data

Extended Data Figure 3 The difference between plant xylem δ-source precipitation values and mean groundwater δ2H values, plotted against increasing distance of groundwater locations from actual plant xylem study sites.

The extents of the boxes show the 25th and 75th percentiles; whiskers show the extents of outliers. Also shown are median (interquartile range) values (P > 0.90, Tukey–Kramer honest significant difference) for five (n = 7; n = 8; n = 7; n = 9; n = 11) arbitrary distance ranges.

Source data

Extended Data Figure 4 Groundwater and plant xylem source precipitation.

Plot of δ18O versus δ2H for global plant xylem water (green triangles, n = 1,460), soil water (grey circles, n = 1,830), and groundwater (blue circles, n = 2,749). Also shown are the isotopic composition of source precipitation that leads to groundwater recharge (blue circle with error bars, mean ± 1 s.d.) and precipitation that leads to plant water uptake (green triangle with error bars, mean ± 1 s.d.). The inset shows the linear regression of plant xylem water and soil water, forming distinct evaporation lines (ELs) whereby, at a site level, plant xylem water is completely bounded by soil water. Also shown are GMWL and LMWL in the main plot and inset, respectively.

Source data

Extended Data Figure 5 Comparison of plant xylem (black boxes) and soil water (grey boxes) δ18O, based on water extraction techniques.

Cryogenic vacuum (n = 2,640) and azeotropic distillation (n = 441) are significantly different from liquid–vapour equilibration methods (n = 204) (P < 0.0001, nonparametric Dunn method for joint ranking). Cryogenic vacuum and azeotropic distillation are not significantly different from each other (P = 0.35, nonparametric Dunn method for joint ranking). The extents of the boxes show the 25th and 75th percentiles; whiskers show the extents of outliers. Also shown are median (interquartile range) values for each water type and water extraction technique.

Source data

Extended Data Figure 6 Global map of plant xylem water precipitation offsets from 47 study sites.

Extended Data Table 1 Site-by-site source precipitation δ values for plant xylem water, groundwater and soil water
Extended Data Table 2 Site-by-site soil water precipitation offset values
Extended Data Table 3 Biome-level soil water precipitation offset values

Related audio

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evaristo, J., Jasechko, S. & McDonnell, J. Global separation of plant transpiration from groundwater and streamflow. Nature 525, 91–94 (2015). https://doi.org/10.1038/nature14983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14983

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing