Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The disruption of multiplanet systems through resonance with a binary orbit

Abstract

Most exoplanetary systems in binary stars are of S-type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion1,2. Planetary eccentricities and mutual inclinations can be large3,4, perhaps forced gravitationally by the binary companion4,5,6. Earlier work on single planet systems5,7,8,9,10 appealed to the Kozai–Lidov instability11,12 wherein a sufficiently inclined binary orbit excites large-amplitude oscillations in the planet’s eccentricity and inclination. The instability, however, can be quenched by many agents that induce fast orbital precession, including mutual gravitational forces in a multiplanet system5,13. Here we report that orbital precession, which inhibits Kozai–Lidov cycling in a multiplanet system, can become fast enough to resonate with the orbital motion of a distant binary companion. Resonant binary forcing results in dramatic outcomes ranging from the excitation of large planetary eccentricities and mutual inclinations to total disruption. Processes such as planetary migration14,15 can bring an initially non-resonant system into resonance. As it does not require special physical or initial conditions, binary resonant driving is generic and may have altered the architecture of many multiplanet systems. It can also weaken the multiplanet occurrence rate in wide binaries, and affect planet formation in close binaries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capture into the LLER.
Figure 2: LLER with PMMR for coplanar circular binary orbit.
Figure 3: LLER with PMMR for inclined and eccentric binary orbit.

Similar content being viewed by others

References

  1. Dvorak, R. Planetary orbits in double star systems. [in German] Oesterreichische Akademie Wissenschaften Mathematisch naturwissenschaftliche Klasse Sitzungsberichte Abteilung 191, 423–437 (1982)

    ADS  MATH  Google Scholar 

  2. Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. 190 (Suppl.), 1–42 (2010)

    Article  CAS  Google Scholar 

  3. Tamuz, O. et al. The CORALIE survey for southern extra-solar planets. XV. Discovery of two eccentric planets orbiting HD 4113 and HD 156846. Astropart. Phys. 480, L33–L36 (2008)

    CAS  ADS  Google Scholar 

  4. Kaib, N. A., Raymond, S. N. & Duncan, M. J. 55 Cancri: a coplanar planetary system that is likely misaligned with its star. Astrophys. J. 742, L24 (2011)

    Article  ADS  Google Scholar 

  5. Holman, M., Touma, J. & Tremaine, S. Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B. Nature 386, 254–256 (1997)

    Article  CAS  ADS  Google Scholar 

  6. Kaib, N. A., Raymond, S. N. & Duncan, M. Planetary system disruption by Galactic perturbations to wide binary stars. Nature 493, 381–384 (2013)

    Article  CAS  ADS  Google Scholar 

  7. Wu, Y. & Murray, N. Planet migration and binary companions: the case of HD 80606b. Astrophys. J. 589, 605–614 (2003)

    Article  ADS  Google Scholar 

  8. Fabrycky, D. & Tremaine, S. Shrinking binary and planetary orbits by Kozai cycles with tidal friction. Astrophys. J. 669, 1298–1315 (2007)

    Article  CAS  ADS  Google Scholar 

  9. Lithwick, Y. & Naoz, S. The eccentric Kozai mechanism for a test particle. Astrophys. J. 742, 94 (2011)

    Article  ADS  Google Scholar 

  10. Katz, B., Dong, S. & Malhotra, R. Long-term cycling of Kozai-Lidov cycles: extreme eccentricities and inclinations excited by a distant eccentric perturber. Phys. Rev. Lett. 107, 181101 (2011)

    Article  ADS  Google Scholar 

  11. Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  12. Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962)

    Article  ADS  Google Scholar 

  13. Takeda, G., Kita, R. & Rasio, F. A. Planetary systems in binaries. I. Dynamical classification. Astrophys. J. 683, 1063–1075 (2008)

    Article  ADS  Google Scholar 

  14. Malhotra, R. The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993)

    Article  ADS  Google Scholar 

  15. Murray, N., Hansen, B., Holman, M. & Tremaine, S. Migrating planets. Science 279, 69–72 (1998)

    Article  CAS  ADS  Google Scholar 

  16. Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005)

    Article  CAS  ADS  Google Scholar 

  17. Levison, H. F., Morbidelli, A., Gomes, R. & Backman, D. Planet migration in planetesimal disks. Protostars Planets V, 669–684 (2007)

    ADS  Google Scholar 

  18. Hahn, J. M. & Malhotra, R. Neptune’s migration into a stirred-up Kuiper belt: a detailed comparison of simulations to observations. Astron. J. 130, 2392–2414 (2005)

    Article  ADS  Google Scholar 

  19. Lykawka, P. S., Horner, J., Jones, B. W. & Mukai, T. Origin and dynamical evolution of Neptune Trojans—I. Formation and planetary migration. Mon. Not. R. Astron. Soc. 398, 1715–1729 (2009)

    Article  ADS  Google Scholar 

  20. Murray, C. D. & Dermott, S. F. Solar System Dynamics Ch. 7 (Cambridge Univ. Press, 1999)

    MATH  Google Scholar 

  21. Touma, J. R., Tremaine, S. & Kazandjian, M. V. Gauss’s method for secular dynamics, softened. Mon. Not. R. Astron. Soc. 394, 1085–1108 (2009)

    Article  ADS  Google Scholar 

  22. Touma, J. & Wisdom, J. Resonances in the early evolution of the Earth–Moon system. Astron. J. 115, 1653–1663 (1998)

    Article  ADS  Google Scholar 

  23. Ćuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012)

    Article  ADS  Google Scholar 

  24. Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999)

    Article  ADS  Google Scholar 

  25. Rein, H. A proposal for community driven and decentralized astronomical databases and the Open Exoplanet Catalogue. Preprint at http://arxiv.org/abs/1211.7121 (2012)

  26. Poveda, A., Allen, C. & Hernández-Alcántara, A. in IAU Symposium (eds Hartkopf, W. I., Harmanec, P. & Guinan, E. F. ) Vol. 240, 417–425 (IAU, 2007)

    Google Scholar 

  27. Wang, J., Fischer, D. A., Xie, J.-W. & Ciardi, D. R. Influence of stellar multiplicity on planet formation. II. Planets are less common in multiple-star systems with separations smaller than 1500 au . Astrophys. J. 791, 111 (2014)

    Article  ADS  Google Scholar 

  28. Wang, J., Xie, J.-W., Barclay, T. & Fischer, D. A. Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 au and validation of four planets from the Kepler multiple planet candidates. Astrophys. J. 783, 4 (2014)

    Article  ADS  Google Scholar 

  29. Rafikov, R. R. & Silsbee, K. Planet formation in stellar binaries. I. Planetesimal dynamics in massive protoplanetary disks. Astrophys. J. 798, 69 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Tremaine and the Institute for Advanced Study for hosting us in the early stages of our collaboration.

Author information

Authors and Affiliations

Authors

Contributions

J.R.T. and S.S. identified the process, developed and analysed mathematical models and wrote the paper and supplements. J.R.T. performed and analysed numerical experiments and produced all of the figures.

Corresponding author

Correspondence to Jihad R. Touma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and data, Supplementary References and Supplementary Figures 1–7. (PDF 2340 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touma, J., Sridhar, S. The disruption of multiplanet systems through resonance with a binary orbit. Nature 524, 439–441 (2015). https://doi.org/10.1038/nature14873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14873

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics