The changing form of Antarctic biodiversity

Journal name:
Nature
Volume:
522,
Pages:
431–438
Date published:
DOI:
doi:10.1038/nature14505
Received
Accepted
Published online

Abstract

Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewhere.

References

  1. Gaston, K. J. Global patterns in biodiversity. Nature 405, 220227 (2000)
  2. Belanger, C. L. et al. Global environmental predictors of benthic marine biogeographic structure. Proc. Natl Acad. Sci. USA 109, 1404614051 (2012)
  3. Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014)
  4. Barberán, A., Casamayor, E. O. & Fierer, N. The microbial contribution to macroecology. Front. Microbiol. 5, 203 (2014)
  5. Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241244 (2014)
  6. Wilkins, D. et al. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol. Rev. 37, 303335 (2013)
  7. Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203244 (2014)
  8. Turner, J. et al. Antarctic climate change and the environment: an update. Polar Rec. (Gr. Brit.) 50, 237259 (2014)
  9. Tin, T. et al. Impacts of local human activities on the Antarctic environment. Antarct. Sci. 21, 333 (2009)
  10. Ainley, D. G. & Pauly, D. Fishing down the food web of the Antarctic continental shelf and slope. Polar Rec. (Gr. Brit.) 50, 92107 (2014)
  11. Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob. Change Biol. 20, 30043025 (2014)
  12. Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nature Commun. 5, 4318 (2014)
  13. Brandt, A. et al. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447, 307311 (2007)
    This study of benthic diversity challenged the notion that deep-sea diversity is depressed in the Southern Ocean, with its findings borne out by recent comprehensive surveys.
  14. De Broyer, C. et al. Biogeographic Atlas of the Southern Ocean (Scientific Committee on Antarctic Research, 2014)
  15. López-Bueno, A. et al. High diversity of the viral community from an Antarctic lake. Science 326, 858861 (2009)
    This study showed that an Antarctic lake viral community has high genetic richness distributed across the highest number of viral families found in aquatic viral genomes, with a substantial proportion of sequences related to eukaryotic viruses, unlike the situation for other aquatic viromes.
  16. Casanovas, P., Lynch, H. J. & Fagan, W. F. Multi-scale patterns of moss and lichen richness on the Antarctic Peninsula. Ecography 36, 209219 (2013)
  17. Kennicutt, M. C. II et al. Six priorities for Antarctic science. Nature 512, 2325 (2014)
  18. Janosik, A. M. & Halanych, K. M. Unrecognized Antarctic biodiversity: a case study of the genus Odontaster (Odontasteridae; Asteroidea). Integr. Comp. Biol. 50, 981992 (2010)
  19. Kaiser, S. et al. Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Mar. Biol. 160, 22952317 (2013)
  20. Halanych, K. M., Cannon, J. T., Mahon, A. R., Swalla, B. J. & Smith, C. R. Modern Antarctic acorn worms form tubes. Nature Commun. 4, 2738 (2013)
  21. Clarke, A. in Marine Macroecology (eds Witman, J. D. & Roy, K.) 250278 (University of Chicago Press, 2009)
  22. Davies, R. G., Irlich, U. M., Chown, S. L. & Gaston, K. J. Ambient, productive and wind energy, and ocean extent predict global species richness of procellariiform seabirds. Glob. Ecol. Biogeogr. 19, 98110 (2010)
  23. Rogers, A. D. et al. The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLoS Biol. 10, e1001234 (2012)
    This study showed that the fauna of deep-sea hydrothermal vents on the East Scotia Ridge in the Southern Ocean is wholly different to vent faunas elsewhere, demonstrating that Antarctic endemicity extends to these faunas.
  24. Petersen, J. M. et al. Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476, 176180 (2011)
  25. Crame, J. A. Early Cenozoic differentiation of polar marine faunas. PLoS ONE 8, e54139 (2013)
  26. Marshall, D. J., Krug, P. J., Kupriyanova, E. K., Byrne, M. & Emlet, R. B. The biogeography of marine invertebrate life histories. Annu. Rev. Ecol. Evol. Syst. 43, 97114 (2012)
  27. Havermans, C., Nagy, Z. T., Sonet, G., De Broyer, C. & Martin, P. DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 230241 (2011)
  28. Raupach, M. J., Malyutina, M., Brandt, A. & Wägele, J.-W. Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 54, 18201830 (2007)
  29. Wilson, N. G., Hunter, R. L., Lockhart, S. J. & Halanych, K. M. Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar. Biol. 152, 895904 (2007)
    This broad-scale study challenges the generalization that many Antarctic species have circumpolar distributions, instead suggesting that much unrecognized diversity and geographic structure exists in the Antarctic biota.
  30. Wilson, N. G., Maschek, J. A. & Baker, B. J. A species flock driven by predation? Secondary metabolites support diversification of slugs in Antarctica. PLoS ONE 8, e80277 (2013)
  31. Lecointre, G. et al. Is the species flock concept operational? The Antarctic shelf case. PLoS ONE 8, e68787 (2013)
  32. Near, T. J. et al. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc. Natl Acad. Sci. USA 109, 34343439 (2012)
    This study showed that although antifreeze was acquired early in the evolution of notothenioid fishes in Antarctica, the main burst of diversification was much more recent, probably during the Late Miocene cooling.
  33. Cziko, P. A., DeVries, A. L., Evans, C. W. & Cheng, C. H. C. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proc. Natl Acad. Sci. USA 111, 1458314588 (2014)
  34. Thatje, S., Hillenbrand, C.-D., Mackensen, A. & Larter, R. Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89, 682692 (2008)
  35. Rogers, A. D. in Antarctic Ecosystems. An Extreme Environment in a Changing World (eds Rogers, A. D., Johnston, N. M., Murphy, E. J. & Clarke, A.) 417467 (Wiley-Blackwell, 2012)
  36. Allcock, A. L. & Strugnell, J. M. Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol. Evol. 27, 520528 (2012)
  37. Barnes, D. K. A. & Hillenbrand, C.-D. Faunal evidence for a late Quaternary trans-Antarctic seaway. Glob. Change Biol. 16, 32973303 (2010)
    This ecological study showed striking similarities in bryozoan assemblages in the Weddell and Ross Seas, supporting the hypothesis that partial collapse of the West Antarctic Ice Sheet during Pleistocene interglacials created a trans-Antarctic seaway.
  38. Pierrat, B., Saucède, T., Brayard, A., David, B. & Crame, A. Comparative biogeography of echinoids, bivalves and gastropods from the Southern Ocean. J. Biogeogr. 40, 13741385 (2013)
  39. Peat, H. J., Clarke, A. & Convey, P. Diversity and biogeography of the Antarctic flora. J. Biogeogr. 34, 132146 (2007)
  40. Stevens, M. I. & Hogg, I. D. in Trends in Antarctic Terrestrial and Limnetic Ecosystems (eds Bergstrom, D. M., Convey, P. & Huiskes, A. H. L.) 177192 (Springer, 2006)
  41. Velasco-Castrillón, A., Gibson, J. A. E. & Stevens, M. I. A review of current Antarctic limno-terrestrial microfauna. Polar Biol. 37, 15171531 (2014)
  42. Velasco-Castrillón, A. & Stevens, M. I. Morphological and molecular diversity at a regional scale: a step closer to understanding Antarctic nematode biogeography. Soil Biol. Biochem. 70, 272284 (2014)
  43. Torricelli, G. et al. High divergence across the whole mitochondrial genome in the “pan-Antarctic” springtail Friesea grisea: evidence for cryptic species? Gene 449, 3040 (2010)
  44. Terauds, A. et al. Conservation biogeography of the Antarctic. Divers. Distrib. 18, 726741 (2012)
  45. Pisa, S. et al. The cosmopolitan moss Bryum argenteum in Antarctica: recent colonisation or in situ survival? Polar Biol. 37, 14691477 (2014)
  46. McGaughran, A., Stevens, M. I., Hogg, I. D. & Carapelli, A. Extreme glacial legacies: a synthesis of the Antarctic springtail phylogeographic record. Insects 2, 6282 (2011)
  47. Vyverman, W. et al. Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci. 4, 103113 (2010)
  48. Zablocki, O. et al. High-level diversity of tailed phages, eukaryote-associated viruses, and virophage-like elements in the metaviromes of Antarctic soils. Appl. Environ. Microbiol. 80, 68886897 (2014)
  49. Yergeau, E. et al. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol. Ecol. 59, 436451 (2007)
  50. Cary, S. C., McDonald, I. R., Barrett, J. E. & Cowan, D. A. On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Rev. Microbiol. 8, 129138 (2010)
  51. Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 2139021395 (2012)
  52. Lee, C. K., Barbier, B. A., Bottos, E. M., McDonald, I. R. & Cary, S. C. The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. ISME J. 6, 10461057 (2012)
  53. Chan, Y., Van Nostrand, J. D., Zhou, J., Pointing, S. B. & Farrell, R. L. Functional ecology of an Antarctic Dry Valley. Proc. Natl Acad. Sci. USA 110, 89908995 (2013)
    This study showed, using a metagenomic approach, significant plasticity in autotrophic, diazotrophic and heterotrophic strategies which support microbial communities in the Antarctic Dry Valleys.
  54. Laybourn-Parry, J. & Pearce, D. A. The biodiversity and ecology of Antarctic lakes: models for evolution. Phil. Trans. R. Soc. B 362, 22732289 (2007)
  55. Anesio, A. M. & Bellas, C. M. Are low temperature habitats hot spots of microbial evolution driven by viruses? Trends Microbiol. 19, 5257 (2011)
  56. Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F. & Corbeil, J. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl. Environ. Microbiol. 78, 549559 (2012)
  57. Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310313 (2014)
    This study showed that subglacial Lake Whillans, which lies below 800 m of ice, has a diverse, chemosynthetically driven assemblage of Bacteria and Archaea, thus verifying the existence of deep, subglacial life.
  58. Pennycuick, C. J. in Comparative Physiology: Life in Water and on Land, Vol. 9 (eds Dejours, P., Bolis, L., Taylor, C. R. & Weibel, E. R.) 371386 (Liviana Press, 1987)
  59. Weimerskirch, H., Louzao, M., de Grissac, S. & Delord, K. Changes in wind pattern alter albatross distribution and life-history traits. Science 335, 211214 (2012)
  60. Green, T. G. A., Sancho, L. G., Pintado, A. & Schroeter, B. Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biol. 34, 16431656 (2011)
  61. Fraser, C. I., Terauds, A., Smellie, J., Convey, P. & Chown, S. L. Geothermal activity helps life survive glacial cycles. Proc. Natl Acad. Sci. USA 111, 56345639 (2014)
  62. Hawes, T. C. Antarctica's geological arks of life. J. Biogeogr. 42, 207208 (2015)
  63. Barrett, J. E. et al. Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarct. Sci. 18, 535548 (2006)
  64. Pointing, S. B. et al. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl Acad. Sci. USA 106, 1996419969 (2009)
    This study showed that considerable microbial diversity exists as four distinct communities, including three lithic ones, in the hyper-arid Antarctic Dry Valleys.
  65. Pearce, D. A. et al. Microorganisms in the atmosphere over Antarctica. FEMS Microbiol. Ecol. 69, 143157 (2009)
  66. Herbold, C. W., Lee, C. K., McDonald, I. R. & Cary, S. C. Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nature Commun. 5, 3875 (2014)
  67. Gordon, D. A., Priscu, J. & Giovannoni, S. Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb. Ecol. 39, 197202 (2000)
  68. Archer, S. D., McDonald, I. R., Herbold, C. W. & Cary, S. C. Characterisation of bacterioplankton communities in the meltwater ponds of Bratina Island, Victoria Land, Antarctica. FEMS Microbiol. Ecol. 89, 451464 (2014)
  69. Bowman, J. P., McCammon, S. A., Rea, S. M. & McMeekin, T. A. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol. Lett. 183, 8188 (2000)
  70. Villaescusa, J. A. et al. A close link between bacterial community composition and environmental heterogeneity in maritime Antarctic lakes. Int. Microbiol. 13, 6777 (2010)
  71. Lauro, F. M. et al. An integrative study of a meromictic lake ecosystem in Antarctica. ISME J. 5, 879895 (2011)
  72. Bielewicz, S. et al. Protist diversity in a permanently ice-covered Antarctic lake during the polar night transition. ISME J. 5, 15591564 (2011)
  73. Lefebvre, V., Donnadieu, Y., Sepulchre, P., Swingedouw, D. & Zhang, Z.-S. Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current. Paleoceanography 27, PA4201 (2012)
  74. Leese, F., Agrawal, S. & Held, C. Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Naturwissenschaften 97, 583594 (2010)
  75. Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol. Evol. 27, 462471 (2012)
  76. Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17, 51045117 (2008)
  77. Poulin, E., González-Wevar, C., Díaz, A., Gérard, K. & Hüne, M. Divergence between Antarctic and South American marine invertebrates: what molecular biology tells us about Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current. Global Planet. Change 123, 392399 (2014)
  78. Page, T. J. & Linse, K. More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol. 25, 818826 (2002)
  79. Wilson, N. G., Schrodl, M. & Halanych, K. M. Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol. Ecol. 18, 965984 (2009)
  80. Díaz, A., Féral, J. P., David, B., Saucède, T. & Poulin, E. Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 205211 (2011)
  81. O’Hara, T. D., Smith, P. J., Mills, V. S., Smirnov, I. & Steinke, D. Biogeographical and phylogeographical relationships of the bathyal ophiuroid fauna of the Macquarie Ridge, Southern Ocean. Polar Biol. 36, 321333 (2013)
  82. Hunter, R. L. & Halanych, K. M. Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J. Hered. 99, 137148 (2008)
  83. Barnes, D. K. A., Hodgson, D. A., Convey, P., Allen, C. S. & Clarke, A. Incursion and excursion of Antarctic biota: past, present and future. Glob. Ecol. Biogeogr. 15, 121142 (2006)
  84. Huiskes, A. H. L. et al. Aliens in Antarctica: assessing transfer of plant propagules by human visitors to reduce invasion risk. Biol. Conserv. 171, 278284 (2014)
  85. Molina-Montenegro, M. A. et al. Assessing the importance of human activities for the establishment of the invasive Poa annua in Antarctica. Polar Res. 33, 21425 (2014)
  86. Volonterio, O., de León, R. P., Convey, P. & Krzemińska, E. First record of Trichoceridae (Diptera) in the maritime Antarctic. Polar Biol. 36, 11251131 (2013)
  87. Lewis, P. N., Riddle, M. & Hewitt, C. L. Management of exogenous threats to Antarctica and the sub-Antarctic Islands: balancing the risks from TBT and non-indigenous marine organisms. Mar. Pollut. Bull. 49, 9991005 (2004)
    This study showed that a diverse fouling community can be transported to Antarctica on the hulls of research vessels, though sea-ice may reduce the numbers of organisms being transported.
  88. Aronson, R. B., Frederich, M., Price, R. & Thatje, S. Prospects for the return of shell-crushing crabs to Antarctica. J. Biogeogr. 42, 17 (2015)
  89. Griffiths, H. J., Whittle, R. J., Roberts, S. J., Belchier, M. & Linse, K. Antarctic crabs: invasion or endurance? PLoS ONE 8, e66981 (2013)
  90. Berkman, P. A., Lang, M. A., Walton, D. W. H., Young, O. R. (eds) Science Diplomacy. Antarctica, Science, and the Governance of International Spaces. (Smithsonian Institution, 2011)
  91. Convention on Biological Diversity. National Biodiversity Strategy and Action Plans. http://www.cbd.int/nbsap/ (2015)
  92. Shaw, J. D., Terauds, A., Riddle, M. J., Possingham, H. P. & Chown, S. L. Antarctica's protected areas are inadequate, unrepresentative, and at risk. PLoS Biol. 12, e1001888 (2014)
  93. Hughes, K. A. & Convey, P. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob. Environ. Change 20, 96112 (2010)
  94. Braun, C. et al. in Antarctic Futures. Human Engagement with the Antarctic Environment (eds Tin, T., Liggett, D., Maher, P. T. & Lamers, M.) 169191 (Springer, 2014)
  95. CEP (Committee for Environmental Protection). Non-native species manual. http://www.ats.aq/documents/atcm34/ww/atcm34_ww004_e.pdf (2011)
  96. Nielsen, U. N. & Wall, D. H. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol. Lett. 16, 409419 (2013)
  97. Smith, W. O. Jr, Ainley, D. G., Arrigo, K. R. & Dinniman, M. S. The oceanography and ecology of the Ross Sea. Annu. Rev. Mar. Sci. 6, 469487 (2014)
  98. Ainley, D. G. et al. Decadal trends in abundance, size and condition of Antarctic toothfish in McMurdo Sound, Antarctica, 1972–2011. Fish Fish. 14, 343363 (2013)
  99. Brady, A.-M., ed. The Emerging Politics of Antarctica (Routledge, 2013)
  100. Puig-Marcó, R. Access and benefit sharing of Antarctica's biological material. Mar. Genomics 17, 7378 (2014)
  101. Wan, E. et al. Green technologies for room temperature nucleic acid storage. Curr. Issues Mol. Biol. 12, 135142 (2010)
  102. Fretwell, P. T. et al. An emperor penguin population estimate: the first global, synoptic survey of a species from space. PLoS ONE 7, e33751 (2012)
    This study showed that a synoptic survey of the entire population of an important Antarctic species, the Emperor Penguin, can be undertaken for a single year by satellite remote sensing, with the numbers of breeding pairs estimated increasing over previous counts by >50,000.
  103. Shin, J.-I., Kim, H.-C., Kim, S.-I. & Hong, S. G. Vegetation abundance on the Barton Peninsula, Antarctica: estimation from high-resolution satellite images. Polar Biol. 37, 15791588 (2014)
  104. van Dorst, J. et al. Community fingerprinting in a sequencing world. FEMS Microbiol. Ecol. 89, 316330 (2014)
  105. Lynch, H. J., Naveen, R., Trathan, P. N. & Fagan, W. J. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93, 13671377 (2012)
  106. Peck, L. S. & Clark, M. S. in Adaptation and Evolution in Marine Environments, Volume 1 (eds di Prisco, G. & Verde, C.) 157182 (Springer, 2012)
  107. Bednaršek, N. et al. Extensive dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 5, 881885 (2012)
  108. Kawaguchi, S. et al. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Climate Change 3, 843847 (2013)
  109. Ansorge, I. J. & Lutjeharms, J. R. E. Eddies originating at the South-West Indian Ridge. J. Mar. Syst. 39, 118 (2003)
  110. Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375393 (2013)

Download references

Author information

Affiliations

  1. School of Biological Sciences, Monash University, Victoria 3800, Australia

    • Steven L. Chown,
    • Katherine L. Moon &
    • Melodie A. McGeoch
  2. British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK

    • Andrew Clarke
  3. Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia

    • Ceridwen I. Fraser &
    • Katherine L. Moon
  4. International Centre for Terrestrial Antarctic Research, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand

    • S. Craig Cary

Contributions

S.L.C., S.C.C. and M.A.M. conceived the work; C.I.F conceptualized and drew the figures; all authors contributed equally to the planning and writing of the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Additional data