Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

eIF3 targets cell-proliferation messenger RNAs for translational activation or repression

Abstract

Regulation of protein synthesis is fundamental for all aspects of eukaryotic biology by controlling development, homeostasis and stress responses1,2. The 13-subunit, 800-kilodalton eukaryotic initiation factor 3 (eIF3) organizes initiation factor and ribosome interactions required for productive translation3. However, current understanding of eIF3 function does not explain genetic evidence correlating eIF3 deregulation with tissue-specific cancers and developmental defects4. Here we report the genome-wide discovery of human transcripts that interact with eIF3 using photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP)5. eIF3 binds to a highly specific program of messenger RNAs involved in cell growth control processes, including cell cycling, differentiation and apoptosis, via the mRNA 5′ untranslated region. Surprisingly, functional analysis of the interaction between eIF3 and two mRNAs encoding the cell proliferation regulators c-JUN and BTG1 reveals that eIF3 uses different modes of RNA stem–loop binding to exert either translational activation or repression. Our findings illuminate a new role for eIF3 in governing a specialized repertoire of gene expression and suggest that binding of eIF3 to specific mRNAs could be targeted to control carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PAR-CLIP of the multi-protein translation initiation factor complex eIF3.
Figure 2: Analysis and validation of eIF3 PAR-CLIP-derived binding sites.
Figure 3: eIF3 is a positive and negative transcript-specific translational regulator.
Figure 4: Opposing translation phenotypes are driven by different modes of eIF3–mRNA binding.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

All data have been deposited in the Gene Expression Omnibus under accession number GSE65004.

References

  1. Stumpf, C. R. & Ruggero, D. The cancerous translation apparatus. Curr. Opin. Genet. Dev. 21, 474–483 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nature Rev. Cancer 10, 254–266 (2010)

    Article  CAS  Google Scholar 

  3. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Rev. Mol. Cell Biol. 11, 113–127 (2010)

    CAS  Google Scholar 

  4. Hershey, J. W. Regulation of protein synthesis and the role of eIF3 in cancer. Braz. J. Med. Biol. Res. 43, 920–930 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choudhuri, A., Maitra, U. & Evans, T. Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis. Proc. Natl Acad. Sci. USA 110, 9818–9823 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Curran, S. P. & Ruvkun, G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet. 3, e56 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang, L., Pan, X. & Hershey, J. W. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem. 282, 5790–5800 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. Fraser, C. S. & Doudna, J. A. Structural and mechanistic insights into hepatitis C viral translation initiation. Nature Rev. Microbiol. 5, 29–38 (2007)

    Article  CAS  Google Scholar 

  10. Corcoran, D. L. et al. PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol. 12, R79 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pisarev, A. V., Kolupaeva, V. G., Yusupov, M. M., Hellen, C. U. & Pestova, T. V. Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J. 27, 1609–1621 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hashem, Y. et al. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 153, 1108–1119 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hashem, Y. et al. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit. Nature 503, 539–543 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Erzberger, J. P. et al. Molecular architecture of the 40SeIF1eIF3 translation initiation complex. Cell 158, 1123–1135 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wisdom, R., Johnson, R. S. & Moore, C. c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J. 18, 188–197 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rouault, J. P. et al. BTG1, a member of a new family of antiproliferative genes. EMBO J. 11, 1663–1670 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bakker, W. J. et al. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J. Cell Biol. 164, 175–184 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blau, L. et al. Aberrant expression of c-Jun in glioblastoma by internal ribosome entry site (IRES)-mediated translational activation. Proc. Natl Acad. Sci. USA 109, E2875–E2884 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kozak, M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol. Cell. Biol. 9, 5134–5142 (1989)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson, R., Spiegelman, B., Hanahan, D. & Wisdom, R. Cellular transformation and malignancy induced by ras require c-jun. Mol. Cell. Biol. 16, 4504–4511 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Waanders, E. et al. The origin and nature of tightly clustered BTG1 deletions in precursor B-cell acute lymphoblastic leukemia support a model of multiclonal evolution. PLoS Genet. 8, e1002533 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pincheira, R., Chen, Q. & Zhang, J. T. Identification of a 170-kDa protein over-expressed in lung cancers. Br. J. Cancer 84, 1520–1527 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carlsten, J. O., Zhu, X. & Gustafsson, C. M. The multitalented Mediator complex. Trends Biochem. Sci. 38, 531–537 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. Andaya, A., Villa, N., Jia, W., Fraser, C. S. & Leary, J. A. Phosphorylation stoichiometries of human eukaryotic initiation factors. Int. J. Mol. Sci. 15, 11523–11538 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Damoc, E. et al. Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry. Mol. Cell. Proteomics 6, 1135–1146 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. Holz, M. K., Ballif, B. A., Gygi, S. P. & Blenis, J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569–580 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. Kondrashov, N. et al. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145, 383–397 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, A. S., Burdeinick-Kerr, R. & Whelan, S. P. A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proc. Natl Acad. Sci. USA 110, 324–329 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Ule, J., Jensen, K., Mele, A. & Darnell, R. B. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37, 376–386 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. Kranzusch, P. J. et al. Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Cell 158, 1011–1021 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rakotondrafara, A. M. & Hentze, M. W. An efficient factor-depleted mammalian in vitro translation system. Nature Protocols 6, 563–571 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. Sun, C. et al. Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3). Proc. Natl Acad. Sci. USA 108, 20473–20478 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davidovich, C., Zheng, L., Goodrich, K. J. & Cech, T. R. Promiscuous RNA binding by Polycomb repressive complex 2. Nature Struct. Mol. Biol. 20, 1250–1257 (2013)

    Article  CAS  Google Scholar 

  34. Kranzusch, P. J. et al. Assembly of a functional Machupo virus polymerase complex. Proc. Natl Acad. Sci. USA 107, 20069–20074 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bai, Y., Zhou, K. & Doudna, J. A. Hepatitis C virus 3′UTR regulates viral translation through direct interactions with the host translation machinery. Nucleic Acids Res. 41, 7861–7874 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vasa, S. M., Guex, N., Wilkinson, K. A., Weeks, K. M. & Giddings, M. C. ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA 14, 1979–1990 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hafner, M. et al. Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing. Methods 58, 164–170 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols 1, 2856–2860 (2007)

    Article  Google Scholar 

  39. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009)

    PubMed  PubMed Central  Google Scholar 

  40. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lebedeva, S. et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell 43, 340–352 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Doudna, D. Ruggero, D. Black, M. Truitt, A. Tambe, Y. Bai and K. Chat for discussions. HeLa cytoplasm was a gift from J. Fang. This work used the Vincent J. Coates Genomics Sequencing Laboratory at University of California, Berkeley, supported by National Institutes of Health (NIH) S10 Instrumentation Grants S10RR029668 and S10RR027303; and the Vincent J. Proteomics/Mass Spectrometry Laboratory at University of California, Berkeley, supported in part by NIH S10 Instrumentation Grant S10RR025622. This work was funded by the National Institute of General Medical Sciences Center for RNA Systems Biology (A.S.Y.L. and J.H.D.C.). A.S.Y.L is supported as an American Cancer Society Postdoctoral Fellow (PF-14-108-01-RMC) and P.J.K. is supported as a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by A.S.Y.L. in consultation with J.H.D.C. All experiments and analyses were performed by A.S.Y.L. P.J.K. performed gel shift assays and assisted with biochemistry. The manuscript was written by A.S.Y.L. and J.H.D.C. All authors contributed to editing the manuscript and support the conclusions.

Corresponding author

Correspondence to Jamie H. D. Cate.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 PAR-CLIP reveals eIF3a, b, d and g bind to RNA.

a, Mass spectrometry identification of trypsin-released peptides from RNA-crosslinked eIF3 subunits. Peptides identified by mass spectrometry are highlighted in pink. b, c, Crosslinking and denaturing immunoprecipitation to validate subunit identification. As eIF3d and g co-migrate with eIF3l and e/f, respectively, subunit identification was validated by immunoprecipitation of individual proteins after crosslinking and treatment of lysates with SDS treatment and boiling.

Extended Data Figure 2 Analysis of eIF3 PAR-CLIP targets.

a, Scatterplot of fragments per kilobase of exon per million reads (FPKM) of all mRNAs expressed in 293T cells. mRNAs that are eIF3 PAR-CLIP targets are highlighted in red. b, Scatterplot of correlation between mRNA expression and PAR-CLIP read coverage for mRNAs that are eIF3 PAR-CLIP targets. The simple linear regression line is plotted in blue, with the 95% confidence region shaded in grey.

Extended Data Figure 3 Conservation of c-JUN and BTG1 eIF3-binding sites in primates and mammals.

a, b, The eIF3-binding site is indicated in cyan. nt, nucleotides. a, c-JUN GenBank accessions are: human (NM_002228.3, Homo sapiens), chimpanzee (XM_513442.5, Pan troglodytes), gorilla (XM_004025880.1, Gorilla gorilla), orangutan (XM_002810763.3, Pongo abelii), rhesus macaque (NM_001265850.2, Macaca mulatta), marmoset (XM_002750880.3, Callithrix jacchus), mouse (NM_010591.2, Mus musculus), cat (XM_006934825.1, Felis catus). b, BTG1 GenBank accessions are: human (NM_001731.2, Homo sapiens), chimpanzee (XM_509262.3, Pan troglodytes), orangutan (XM_002823578.2, Pongo abelii), rhesus macaque (NM_001266672.1, Macaca mulatta), marmoset (XM_002752814.3, Callithrix jacchus), mouse (NM_007569.2, Mus musculus), cat (XM_006933950.1, Felis catus), cow (NM_173999.3, Bos taurus).

Extended Data Figure 4 Interactions between native and recombinant eIF3 and the c-JUN and BTG1 RNA stem–loops.

a, Coomassie blue staining of purified native HeLa eIF3 or recombinant eIF3, resolved by SDS–PAGE. b, Representative native agarose gel electrophoresis shows a specific and binary interaction between native (Nat) and recombinant (Rec) eIF3 and the wild-type (WT) c-JUN stem–loop structure, but not with the mutated stem–loop or the wild-type BTG1 stem–loop.

Extended Data Figure 5 Luciferase activity of c-JUN and BTG1 mutants in cells. a,

b, Luciferase activity in 293T cells transfected with mRNAs containing the c-JUN 5′ UTR with a mutated stem–loop (a) or the PSMB6 5′ UTR-BTG1 stem–loop chimaera (b). Mut, mutant; Rev, transversed; SL, stem–loop; WT, wild type. The results are given as the mean ± s.d. of three independent experiments, each performed in triplicate.

Extended Data Figure 6 Bypassing eIF3 translational control in H1299 cells reduces cell invasiveness.

a, Functional classification of eIF3-bound RNAs. b, Representative western blot analysis of eIF3a expression levels in H1299 and IMR90 cells. GAPDH was detected as a loading control for normalized protein levels. c, Representative image of Matrigel invasion by H1299 or IMR90 cells. d, BTG1 protein levels after overexpression in H1299 cells. HSP90 was detected as a loading control. e, Matrigel invasion assay in H1299 cells after overexpression of BTG1. ORF, open reading frame. f, c-JUN protein levels after siRNA-mediated knockdown in H1299 cells. NT, non-targeting. g, Matrigel invasion assay in H1299 cells after knockdown of c-JUN. The results of e and g are given as the mean ± s.d. of three independent experiments, each performed in duplicate.

Extended Data Figure 7 Schematic of eIF3 subunit localization on the small ribosomal subunit.

The eIF3 subunits bound to RNA in the PAR-CLIP experiment, eIF3a, b and g, form a nexus in the distal eIF3 region. The location of eIF3d has not been assigned, and the schematic is adapted from ref. 14.

Supplementary information

Supplementary Table 1

This file contains the data for Consensus PAR-CLIP eIF3–RNA clusters. (XLS 268 kb)

Supplementary Table 2

This file contains the data for FPKM for eIF3-crosslinked mRNAs. (XLS 160 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, A., Kranzusch, P. & Cate, J. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature 522, 111–114 (2015). https://doi.org/10.1038/nature14267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14267

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer