Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From evolutionary computation to the evolution of things

Abstract

Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principal diagram of evolutionary algorithms.
Figure 2: Two major transitions in the history of artificial evolution.

Similar content being viewed by others

References

  1. Turing, A. M. in Machine Intelligence 5 (eds Meltzer, B. & Michie, D.) (Edinburgh Univ. Press, 1969).

    Google Scholar 

  2. Fogel, L. Owens, A. J. & Walsh. M. J. Artificial Intelligence Through Simulated Evolution (Wiley, 1966).

    MATH  Google Scholar 

  3. Rechenberg, I. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution [in German] (Fromman-Hozlboog, 1973).

    Google Scholar 

  4. Schwefel, H.-P. Numerical Optimization of Computer Models (Birkhäuser, 1977).

    MATH  Google Scholar 

  5. Holland, J. H. Adaption in Natural and Artificial Systems (Univ. Michigan Press, 1975).

    MATH  Google Scholar 

  6. Koza, J. R. Genetic Programming (MIT Press, 1992).

    MATH  Google Scholar 

  7. Eiben, A. E. & Smith, J. E. Introduction to Evolutionary Computing (Springer, 2003).

    Book  MATH  Google Scholar 

  8. Ashlock, D. Evolutionary Computation for Modeling and Optimization (Springer, 2006).

    MATH  Google Scholar 

  9. De Jong, K. Evolutionary Computation: a Unified Approach (MIT Press, 2006).

    MATH  Google Scholar 

  10. Wang, C., Yu, S., Chen, W. & Sun, C. Highly efficient light-trapping structure design inspired by natural evolution. Sci. Rep. 3, 1025 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009). This paper provides a forceful demonstration of the power of evolutionary methods for tasks that are thought to require highly educated scientists to perform.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Eiben, A. E., Kernbach, S. & Haasdijk, E. Embodied artificial evolution: artificial evolutionary systems in the 21st Century. Evol. Intel. 5, 261–272 (2012).

    Article  CAS  Google Scholar 

  13. Eiben, A. E. in Parallel Problem Solving from Nature – PPSNXII (eds Filipic, B., Bartz-Beielstein, T. Branke, J. & Smith, J.) 24–39 (Springer, 2014).

    Book  Google Scholar 

  14. Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J. & Dickau, R. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc. Natl Acad. Sci. USA 106, 5019–5024 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akey, J. M. et al. Tracking footprints of artificial selection in the dog genome. Proc. Natl Acad. Sci. USA 107, 1160–1165 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dennett, D. Darwin's Dangerous Idea (Penguin, 1995).

    Google Scholar 

  17. Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, 1989).

    MATH  Google Scholar 

  18. Fogel, D.B. Evolutionary Computation (IEEE, 1995).

    MATH  Google Scholar 

  19. Schwefel, H.-P. Evolution and Optimum Seeking (Wiley, 1995).

    MATH  Google Scholar 

  20. Bäck, T. Evolutionary Algorithms in Theory and Practice (Oxford Univ. Press, 1996).

    Book  MATH  Google Scholar 

  21. Banzhaf, W., Nordin, P., Keller, R. E. & Francone, F. D. Genetic Programming: an Introduction (Morgan Kaufmann, 1998).

    Book  MATH  Google Scholar 

  22. Storn, R. & Price, K. Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. Price, K. V., Storn, R. N. & Lampinen, J. A. Differential Evolution: a Practical Approach to Global Optimization (Springer, 2005).

    MATH  Google Scholar 

  24. Kennedy, J. & Eberhart, R. C. Particle swarm optimization. In Proc. IEEE International Conference on Neural Networks 1942–1948 (IEEE, 1995).

    Book  Google Scholar 

  25. Kennedy, J. & Eberhart, R.C. Swarm Intelligence (Morgan Kaufmann, 2001).

    Google Scholar 

  26. De Jong, K. A. Are genetic algorithms function optimizers? In Proc. 2nd Conference on Parallel Problem Solving from Nature (eds Manner, R. & Manderick, B.) 3–13 (North-Holland, 1992).

    Google Scholar 

  27. Hornby, G. S., Lohn, J. D. & Linden, D. S. Computer-automated evolution of an X-band antenna for NASA's space technology 5 mission. Evol. Comput. 19, 1–23 (2011).

    Article  PubMed  Google Scholar 

  28. Arias-Montano, A., Coello, C. A. C. & Mezura-Montes, E. Multiobjective evolutionary algorithms in aeronautical and aerospace engineering. IEEE Trans. Evol. Comput. 16, 662–694 (2012).

    Article  Google Scholar 

  29. Besnard, J. et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Posìk, P. Huyer, W. & Pal, L. A comparison of global search algorithms for continuous black box optimization. Evol. Comput. 20, 509–541 (2012).

    Article  PubMed  Google Scholar 

  31. Hansen, N. & Ostermeier, A. Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001). This article introduced the CMA-ES algorithm, widely regarded as the state of the art in numerical optimization.

    Article  CAS  PubMed  Google Scholar 

  32. Bäck, T., Foussette, C. & Krause, P. Contemporary Evolution Strategies (Springer, 2013).

    Book  MATH  Google Scholar 

  33. Yao, X. Evolving artificial neural networks. Proc. IEEE 87, 1423–1447 (1999). This landmark paper, which was the winner of the 2001 Institute of Electrical and Electronics Engineers Donald G. Fink Prize Paper Award, brought together different strands of research and drew attention to the potential benefits of combining these two forms of learning.

    Article  Google Scholar 

  34. Floreano, D., Dürr, P. & Mattiussi, C. Neuroevolution: from architectures to learning. Evol. Intel. 1, 47–62 (2008).

    Article  Google Scholar 

  35. Barros, R. C., Basgalupp, M. P., de Carvalho, A. C. P. L. F. & Freitas, A. A. A survey of evolutionary algorithms for decision-tree induction. IEEE Trans. Syst. Man Cybern. C 42, 291–312 (2012).

    Article  Google Scholar 

  36. Widera, P., Garibaldi, J. M. & Krasnogor, N. GP challenge: evolving energy function for protein structure prediction. Genet. Program. Evolvable Mach. 11, 61–88 (2010).

    Article  Google Scholar 

  37. Filipič, B., Urbančič, T. & Križman, V. A combined machine learning and genetic algorithm approach to controller design. Eng. Appl. Artif. Intell. 12, 401–409 (1999).

    Article  Google Scholar 

  38. Watson, R. A., Ficici, S. G. & Pollack, J. B. Embodied evolution: distributing an evolutionary algorithm in a population of robots. Robot. Auton. Syst. 39, 1–18 (2002).

    Article  Google Scholar 

  39. Bredeche, N., Montanier, J. M., Liu, W. & Winfield, A. F. T. Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents. Math. Comput. Model. Dyn. Syst. 18, 101–129 (2012).

    Article  MATH  Google Scholar 

  40. Nolfi, S. & Floreano, D. Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines (MIT Press, 2000).

    Google Scholar 

  41. Bongard, J. Evolutionary robotics. Commun. ACM 56, 74–85 (2013).

    Article  Google Scholar 

  42. Floreano, D. & Keller, L. Evolution of adaptive behavior in robots by means of Darwinian selection. PLoS Biol. 8, e1000292 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hinton, G. E. & Nowlan, S. J. How learning can guide evolution. Complex Syst. 1, 495–502 (1987). This seminal paper showed that learning can guide evolution even though characteristics acquired by the phenotype are not communicated to the genotype.

    MATH  Google Scholar 

  44. Borenstein, E., Meilijson, I. & Ruppin, E. The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes. J. Evol. Biol. 19, 1555–1570 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Paenke, I., Jin, Y. & Branke, J. Balancing population and individual level of adaptation in changing environments. Adapt. Behav. 17, 153–174 (2009).

    Article  Google Scholar 

  46. Chen, X. S., Ong, Y. S., Lim, M. H. & Tan, K. C. A. Multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 15, 591–607 (2011).

    Article  Google Scholar 

  47. Krasnogor, N. & Smith, J. E. A tutorial for competent memetic algorithms: model, taxonomy and design issues. IEEE Trans. Evol. Comput. 9, 474–488 (2005).

    Article  Google Scholar 

  48. Smith, J. E., Clark, A. R., Staggemeier, A. T. & Serpell, M. C. A genetic approach to statistical disclosure control. IEEE Trans. Evol. Comput. 16, 431–441 (2012).

    Article  Google Scholar 

  49. Bentley, P. & Corne, D. Creative Evolutionary Systems (Morgan Kaufmann, 2002).

    Book  Google Scholar 

  50. Romero, J. J. & Machado, P. (eds). The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music (Springer, 2008).

    Book  Google Scholar 

  51. Secretan, J. et al. Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19, 373–403 (2011).

    Article  PubMed  Google Scholar 

  52. Bentley, P. Evolutionary Design by Computers (Morgan Kaufmann, 1999).

    MATH  Google Scholar 

  53. Hingston, P. F., Barone, L. C. & Michalewicz, Z. (eds). Advances in Evolutionary Design (Springer, 2008).

    Book  Google Scholar 

  54. Koza, J. R. Human-competitive results produced by genetic programming. Genet. Program. Evolvable Mach. 11, 251–284 (2010). Offers quantifiable definitions for human competitiveness and a well-documented overview of success stories, including the first patents thought to be granted to inventions created by artificial intelligence.

    Article  Google Scholar 

  55. Eiben, A. E. & Rudolph, G. Theory of evolutionary algorithms: a bird's eye view. Theor. Comput. Sci. 229, 3–9 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  56. Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimisation. IEEE Trans. Evol. Comput. 1, 67–82 (1997). This paper reported game-changing results that supported the shift in focus in evolutionary computing and other fields away from the search for a 'super solver', and inspired insightful discussions that are still ongoing.

    Article  Google Scholar 

  57. Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 5, 96–101 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Lehre, P. R. & Yao, X. On the impact of mutation-selection balance on the runtime of evolutionary algorithms. IEEE Trans. Evol. Comput. 16, 225–241 (2012).

    Article  Google Scholar 

  59. Jansen, T. Analyzing Evolutionary Algorithms: The Computer Science Perspective (Springer, 2005).

    MATH  Google Scholar 

  60. Borenstein, Y. & Moraglio, A. (eds). Theory and Principled Methods for Designing Metaheuristics (Springer, 2014). This text provides good coverage of a range of recent approaches and results in the theory of evolutionary algorithms.

    Book  MATH  Google Scholar 

  61. Eiben, A. E., Hinterding, R. & Michalewicz, Z. Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999). This paper had a long-lasting effect by putting the issue of parameter calibration on the research agenda and establishing the corresponding conceptual framework.

    Article  Google Scholar 

  62. Bartz-Beielstein, T. T. Experimental Research in Evolutionary Computation: the New Experimentalism (Springer, 2006).

    MATH  Google Scholar 

  63. Hutter, F., Hoos, H. H., Leyton-Brown, K. & Stützle, T. ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009).

    Article  MATH  Google Scholar 

  64. Eiben, A. E. & Smit, S. K. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1, 19–31 (2011).

    Article  Google Scholar 

  65. Bartz-Beielstein, T. & Preuss, M. in Theory and Principled Methods for Designing Metaheuristics (eds Borenstein, Y. & Moraglio, A.) 205–245 (Springer, 2014).

    Book  Google Scholar 

  66. Lobo, F. J., Lima, C. F., Michalewicz, Z. (eds). Parameter Setting in Evolutionary Algorithms (Springer, 2007).

    Book  MATH  Google Scholar 

  67. Serpell, M. & Smith, J. E. Self-adaption of mutation operator and probability for permutation representations in genetic algorithms. Evol. Comput. 18, 491–514 (2010).

    Article  PubMed  Google Scholar 

  68. Fialho, A., Da Costa, L., Schoenauer, M. & Sebag, M. Analyzing bandit-based adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 60, 25–64 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  69. Karafotias, G., Hoogendoorn, M. & Eiben, A. E. Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19, 167–187 (2015). This is a recent follow up to ref. 61.

    Article  Google Scholar 

  70. Jin, Y. A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9, 3–12 (2005).

    Article  Google Scholar 

  71. Jin, Y. Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1, 61–70 (2011).

    Article  Google Scholar 

  72. Loshchilov, I., Schoenauer, M. & Sebag, M. Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy. In Proc. Conference on Genetic and Evolutionary Computation (eds Soule, T. & Moore, J. H.) 321–328 (ACM, 2012).

    Google Scholar 

  73. Zaefferer, M. et al. Efficient global optimization for combinatorial problems. In Proc. Conference on Genetic and Evolutionary Computation (eds Igel, C. & Arnold, D. V.) 871–878 (ACM, 2014).

    Google Scholar 

  74. Deb, K. Multi-objective Optimization Using Evolutionary Algorithms (Wiley, 2001).

    MATH  Google Scholar 

  75. Zhang, Q. & Li, H. MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007).

    Article  Google Scholar 

  76. Deb, K. & Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18, 577–601 (2014).

    Article  Google Scholar 

  77. Jain, H. & Deb, K. An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18, 602–622 (2014).

    Article  Google Scholar 

  78. Branke, J., Greco, S., Slowinski, R. & Zielniewicz, P. Learning value functions in interactive evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 19, 88–102 (2015).

    Article  MATH  Google Scholar 

  79. Stanley, K. O. Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. 8, 131–162 (2007).

    Article  Google Scholar 

  80. O'Reilly, U.-M. & Hemberg, H. Integrating generative growth and evolutionary computation for form exploration. Genet. Program. Evolvable Mach. 8, 163–186 (2007).

    Article  Google Scholar 

  81. Clune, J., Stanley, K. O., Pennock, R. & Ofria, C. On the performance of indirect encoding across the continuum of regularity. IEEE Trans. Evol. Comput. 15, 346–367 (2011).

    Article  Google Scholar 

  82. Jin, Y. & Meng, Y. Morphogenetic robotics: an emerging new field in developmental robotics. IEEE Trans. Syst. Man Cybern. C 41, 145–160 (2011).

    Article  Google Scholar 

  83. Doursat, R., Sayama, H. & Michel, O. (eds). Morphogenetic Engineering: Toward Programmable Complex Systems (Springer, 2013).

    Google Scholar 

  84. Doncieux, S., Bredeche, N. & Mouret, J.-B. (eds). New Horizons in Evolutionary Robotics (Springer, 2011).

    Book  Google Scholar 

  85. Vargas, P. A., Di Paolo, E. A., Harvey, I. & Husbands, P. (eds). The Horizons of Evolutionary Robotics (MIT Press, 2014).

    Book  Google Scholar 

  86. Harman, M. & McMinn, P. A theoretical and empirical study of search-based testing: local, global, and hybrid search. IEEE Trans. Softw. Eng. 36, 226–247 (2010).

    Article  Google Scholar 

  87. Preen, R. & Bull, L. Towards the coevolution of novel vertical-axis wind turbines. IEEE Trans. Evol. Comput. 19, 284–294 (2015).

    Article  Google Scholar 

  88. Banzhaf, W. et al. From artificial evolution to computational evolution: a research agenda. Nature Rev. Genet. 7, 729–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Maynard Smith, J. Byte-sized evolution. Nature 355, 772–773 (1992).

    Article  ADS  Google Scholar 

  90. Waibel, M., Floreano, D. & Keller, L. A quantitative test of Hamilton's rule for the evolution of altruism. PLoS Biol. 9, e1000615 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Long, J. Darwin's Devices: What Evolving Robots Can Teach Us About the History of Life and the Future of Technology (Basic Books, 2012).

    Google Scholar 

  92. Virgo, N., Fernando, C., Bigge, B. & Husbands, P. Evolvable physical self-replicators. Artif. Life 18, 129–142 (2012).

    Article  PubMed  Google Scholar 

  93. Bongard, J. & Lipson, H. Evolved machines shed light on robustness and resilience. Proc. IEEE 102, 899–914 (2014).

    Article  Google Scholar 

  94. Bongard, J. Morphological change in machines accelerates the evolution of robust behavior. Proc. Natl Acad. Sci. USA 108, 1234–1239 (2011). This article demonstrated a hitherto unknown relationship between development, evolution, morphology and the neural control of behaviour, as phrased by the title.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Eiben, A. E. Grand challenges for evolutionary robotics. Front. Robot. AI 1, http://dx.doi.org/10.3389/frobt.2014.00004 (2014).

  96. Fernando, C., Kampis, G. & Szathmáry, E. Evolvability of natural and artificial systems. Procedia Comput. Sci. 7, 73–76 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and reviewers, as well as A. Adamatzky, L. Bull, B. Filipic and M. Schoenauer for providing helpful insights on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agoston E. Eiben.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eiben, A., Smith, J. From evolutionary computation to the evolution of things. Nature 521, 476–482 (2015). https://doi.org/10.1038/nature14544

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14544

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics