Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase

Abstract

Eukaryotic vacuolar H+-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions1,2. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases3,4,5, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H+ ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane α-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rotational states of the V-ATPase.
Figure 2: The membrane-bound VO region.
Figure 3: Symmetry mismatch between the V1 and VO regions.
Figure 4: Flexibility of subunits.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Data deposits

Cryo-EM maps have been deposited in the Electron Microscopy Data Bank under accession numbers EMD-6284, EMD-6285, and EMD-6286. Atomic models have been deposited in the Protein Data Bank under accession numbers 3J9T, 3J9U, and 3J9V.

References

  1. Sumner, J. P. et al. Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J. Biol. Chem. 270, 5649–5653 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. Kane, P. M. Disassembly and reassembly of the yeast vacuolar H+-ATPase in vivo. J. Biol. Chem. 270, 17025–17032 (1995)

    CAS  PubMed  Google Scholar 

  3. Pänke, O., Cherepanov, D. A., Gumbiowski, K., Engelbrecht, S. & Junge, W. Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme. Biophys. J. 81, 1220–1233 (2001)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stewart, A. G., Lee, L. K., Donohoe, M., Chaston, J. J. & Stock, D. The dynamic stator stalk of rotary ATPases. Nature Commun. 3, 687 (2012)

    Article  ADS  Google Scholar 

  5. Zhou, M. et al. Ion mobility–mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. Nature Chem. 6, 208–215 (2014)

    Article  ADS  CAS  Google Scholar 

  6. Walker, J. E. ATP synthesis by rotary catalysis (Nobel Lecture). Angew. Chem. Int. Edn 37, 2309–2319 (1998)

    Article  Google Scholar 

  7. Walker, J. E. Keilin Memorial Lecture. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1–16 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. Arai, S. et al. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 493, 703–707 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Benlekbir, S., Bueler, S. A. & Rubinstein, J. L. Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-Å resolution. Nature Struct. Mol. Biol. 19, 1356–1362 (2012)

    Article  CAS  Google Scholar 

  10. Rawson, S. et al. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights. Structure 23, 461–471 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H. & Anraku, Y. VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J. Biol. Chem. 272, 4795–4803 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. Nishi, T., Kawasaki-Nishi, S. & Forgac, M. The first putative transmembrane segment of subunit c′′ (Vma16p) of the yeast V-ATPase is not necessary for function. J. Biol. Chem. 278, 5821–5827 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Matthies, D. et al. High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na+-coupled ATP synthase. Nature Commun. 5, 5286 (2014)

    Article  ADS  Google Scholar 

  16. Nishi, T., Kawasaki-Nishi, S. & Forgac, M. Expression and localization of the mouse homologue of the yeast V-ATPase 21-kDa subunit c′′ (Vma16p). J. Biol. Chem. 276, 34122–34130 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Powell, B., Graham, L. A. & Stevens, T. H. Molecular characterization of the yeast vacuolar H+-ATPase proton pore. J. Biol. Chem. 275, 23654–23660 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. Finnigan, G. C., Hanson-Smith, V., Stevens, T. H. & Thornton, J. W. Evolution of increased complexity in a molecular machine. Nature 481, 360–364 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stock, D., Leslie, A. G. & Walker, J. E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Nicholls, D. G. & Ferguson, S. J. Bioenergetics 3rd edn, Ch. 3 (Academic, 2002)

    Google Scholar 

  21. Bueler, S. A. & Rubinstein, J. L. Vma9p need not be associated with the yeast V-ATPase for fully-coupled proton pumping activity in vitro. Biochemistry 54, 853–858 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. Toei, M., Toei, S. & Forgac, M. Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase. J. Biol. Chem. 286, 35176–35186 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Junge, W. & Nelson, N. Structural biology. Nature’s rotary electromotors. Science 308, 642–644 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. Lau, W. C. Y. & Rubinstein, J. L. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481, 214–218 (2012)

    Article  ADS  CAS  Google Scholar 

  25. Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Cingolani, G. & Duncan, T. M. Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation. Nature Struct. Mol. Biol. 18, 701–707 (2011)

    Article  CAS  Google Scholar 

  27. Numoto, N., Hasegawa, Y., Takeda, K. & Miki, K. Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase. EMBO Rep. 10, 1228–1234 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kabaleeswaran, V. et al. Asymmetric structure of the yeast F1 ATPase in the absence of bound nucleotides. J. Biol. Chem. 284, 10546–10551 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wächter, A. et al. Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk. Proc. Natl Acad. Sci. USA 108, 3924–3929 (2011)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Marr, C. R., Benlekbir, S. & Rubinstein, J. L. Fabrication of carbon films with approximately 500 nm holes for cryo-EM with a direct detector device. J. Struct. Biol. 185, 42–47 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. ArXiv 1409, 1–11 (2014)

    Google Scholar 

  32. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003)

    Article  PubMed  Google Scholar 

  33. Zhao, J., Brubaker, M. A. & Rubinstein, J. L. TMaCS: a hybrid template matching and classification system for partially-automated particle selection. J. Struct. Biol. 181, 234–242 (2013)

    Article  PubMed  Google Scholar 

  34. Zhao, J., Brubaker, M. A., Benlekbir, S. & Rubinstein, J. L. Description and comparison of algorithms for correcting anisotropic magnification in cryo-EM images. ArXiv 1501, 1–10 (2015)

    Google Scholar 

  35. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scheres, S. H. W. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods 4, 27–29 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nature Methods 11, 63–65 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. Loken, C. et al. SciNet: lessons learned from building a power-efficient top-20 system and data centre. J. Phys. Conf. Ser. 256, 012026 (2010)

    Article  Google Scholar 

  39. Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. Pintilie, G. D., Zhang, J., Goddard, T. D., Chiu, W. & Gossard, D. C. Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J. Struct Biol. 170, 427–438 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363–371 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, 244–248 (2005)

    Article  Google Scholar 

  43. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993)

    Article  CAS  PubMed  Google Scholar 

  44. Drory, O., Frolow, F. & Nelson, N. Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep. 5, 1148–1152 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sagermann, M., Stevens, T. H. & Matthews, B. W. Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 98, 7134–7139 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Balakrishna, A. M., Basak, S., Manimekalai, M. S. S. & Gruber, G. Crystal structure of subunits D and F in complex give insight into energy transmission of the eukaryotic V-ATPase from Saccharomyces cerevisiae. J. Biol. Chem. 290, 3183–3196 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. Oot, R. A., Huang, L. S., Berry, E. A. & Wilkens, S. Crystal structure of the yeast vacuolar ATPase heterotrimeric EGC(head) peripheral stalk complex. Structure 20, 1881–1892 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iwata, M. et al. Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proc. Natl Acad. Sci. USA 101, 59–64 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Srinivasan, S., Vyas, N. K., Baker, M. L. & Quiocho, F. A. Crystal structure of the cytoplasmic N-terminal domain of subunit I, a homolog of subunit a, of V-ATPase. J. Mol. Biol. 412, 14–21 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. & Walker, J. E. Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae. Science 308, 654–659 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Rosenthal, R. Henderson, V. Kanelis, and L. Kay for comments on the manuscript. J.Z. was supported by a Doctoral Postgraduate Scholarship from the Natural Sciences and Engineering Research Council of Canada and a Mary Gertrude l’Anson Scholarship. J.L.R. is the Canada Research Chair in Electron Cryomicroscopy. This work was supported by operating grant MOP 81294 from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Contributions

S.B. and J.L.R. initiated the project. J.Z. and S.B. collected images and performed pre-processing steps. J.Z. performed the image analysis. J.Z. and J.L.R. interpreted the data, prepared figures, and wrote the manuscript. J.L.R. and J.Z. contributed new computer algorithms used in image analysis.

Corresponding author

Correspondence to John L. Rubinstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 V-ATPase subunits and rotation.

a, The V-ATPase from S. cerevisiae consists of subunits A3B3CDE3FG3Hacxc′yc′′zde, where x, y, and z denote unknown stoichiometries. Subunits with upper-case letter names correspond to components of the soluble V1 region while lower-case names denote components of the membrane-bound VO region. The e-subunit is not found in the detergent-solubilized S. cerevisiae V-ATPase. During rotary catalysis, ATP hydrolysis drives rotation of the rotor, consisting of subunits DFcxc′yc′′zd (outlined in black), which rotates relative to the rest of the enzyme. Upper inset, the three different nucleotide-binding sites of the V1 region can be found in three different conformations: ‘tight’ (where ATP is expected to be bound), ‘loose’ (where ADP is expected to be bound), and ‘open’ (where no nucleotide is bound). Lower inset, rotation of the cxc′yc′′z-ring against the a-subunit leads to proton translocation from the cytoplasmic side of the membrane to the luminal side of the membrane. Proton translocation occurs via two half-channels through the membrane. b, V-ATPase activity is regulated by reversible dissociation where the V1 region separates from the VO region. The H-subunit inhibits ATP hydrolysis in the dissociated V1 region. Proton translocation in the dissociated VO region is blocked by an unknown mechanism.

Extended Data Figure 2 Data collection.

a, A representative micrograph; examples of V-ATPase particle images are shown circled in red. These particle images were selected from the 200 candidate particle images identified automatically from template matching. b, Tracking of particle and other image feature trajectories with the alignparts_lmbfgs algorithm31. Trajectories are exaggerated by a factor of 5 to allow visualization.

Extended Data Figure 3 Three-dimensional maps from rotational states.

a, Surface rendered views of the three three-dimensional maps are shown. Scale bars, 25 Å. b, Fourier shell correlation (FSC) curves after a ‘gold standard’ refinement of the three maps are shown. The resolutions measured from these curves at a Fourier shell correlation of 0.143 are the same as the resolutions measured after correcting for masking effects by high-resolution noise-substitution calculations51. c, Local resolution estimation shows that features in the V1 region are better resolved than in the VO region.

Extended Data Figure 4 Map segmentation and molecular dynamics flexible fitting.

Different subunits are shown fitted into their corresponding map densities in rotational states 1, 2, and 3, including AB pair 3 (a), the N-terminal domain of subunit a (b), the central rotor DFd subcomplex (c), subunit C (d), and peripheral stalk 1 (e). Scale bar, 25 Å.

Extended Data Figure 5 C-terminal domain of the a-subunit.

a, The membrane-bound C-terminal domain of the a-subunit appears similar in all three rotational states. b, The density from the C-terminal domain of the Thermus thermophilus subunit I, equivalent of the a-subunit, at 9.7 Å resolution3 is consistent with the structure of the a-subunit from S. cerevisiae (left). However, the transmembrane α-helical densities identified previously in that map (right) are not entirely consistent with the current maps.

Extended Data Figure 6 Flexibility in V-ATPase subunits.

ac, Each AB pair in the A3B3 hexamer goes through ‘open’, ‘loose’, and ‘tight’ conformations as the enzyme passes between the three rotational states. df, Overlay of all three open, all three loose, and all three tight structures shows that the conformations are nearly the same for each AB pair. gi, Each of the three EG peripheral stalk structures undergoes similar bending motions between the three rotational states. Scale bar, 25 Å.

Supplementary information

Cross sections through the three maps, each showing a different rotational state of the V-ATPase.

Cross sections through the three maps, each showing a different rotational state of the V-ATPase. (MOV 12001 kb)

Interpolation between the three observed rotational states of the V-ATPase

Interpolation between the three observed rotational states of the V-ATPase. (MOV 32484 kb)

Exploded view of subunits when interpolating between the three observed rotational states of the V-ATPase

Exploded view of subunits when interpolating between the three observed rotational states of the V-ATPase. (MOV 30321 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Benlekbir, S. & Rubinstein, J. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521, 241–245 (2015). https://doi.org/10.1038/nature14365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14365

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing