Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A new heart for a new head in vertebrate cardiopharyngeal evolution

Abstract

It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts — both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The striking heterogeneity of the human head and heart musculature.
Figure 2: An evolutionarily conserved cardiopharyngeal ontogenetic motif.
Figure 3: Some of the synapomorphies of the Chordata and its subgroups, according to our own data and review of the literature.
Figure 4: Homology hypotheses of placodes and branchiomeric muscles within chordates.

Similar content being viewed by others

References

  1. Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. Science 220, 268–273 (1983). This highly influential paper argued that the evolution of head structures derived from neural crest and cranial placodes had a crucial role in the transition to early vertebrates.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Patthey, C., Schlosser, G. & Shimeld, S. M. The evolutionary history of vertebrate cranial placodes — I: cell type evolution. Dev. Biol. 389, 82–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Graham, A. & Shimeld, S. M. The origin and evolution of the ectodermal placodes. J. Anat. 222, 32–40 (2013).

    Article  PubMed  Google Scholar 

  4. Northcutt, R. G. The new head hypothesis revisited. J. Exp. Zool. B Mol. Dev. Evol. 304B, 274–297 (2005).

    Article  Google Scholar 

  5. Kuratani, S. Evolution. A muscular perspective on vertebrate evolution. Science 341, 139–140 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Trinajstic, K. et al. Fossil musculature of the most primitive jawed vertebrates. Science 341, 160–164 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Meilhac, S. M., Esner, M., Kelly, R. G., Nicolas, J. F. & Buckingham, M. E. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev. Cell 6, 685–698 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Kelly, R. G. The second heart field. Curr. Top. Dev. Biol. 100, 33–65 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Tzahor, E. & Evans, S. M. Pharyngeal mesoderm development during embryogenesis: implications for both heart and head myogenesis. Cardiovasc. Res. 91, 196–202 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kelly, R. G., Brown, N. A. & Buckingham, M. E. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev. Cell 1, 435–440 (2001). Discovery of the mammalian SHF, demonstrating that myocardium at the arterial pole of the heart originates in adjacent pharyngeal mesoderm.

    Article  CAS  PubMed  Google Scholar 

  11. Mjaatvedt, C. H. et al. The outflow tract of the heart is recruited from a novel heart-forming field. Dev. Biol. 238, 97–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Waldo, K. L. et al. Conotruncal myocardium arises from a secondary heart field. Development 128, 3179–3188 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Nathan, E. et al. The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 135, 647–657 (2008). This article provides a definition of the contribution of pharyngeal mesoderm to branchiomeric muscles in both chick and mouse embryos.

    Article  CAS  PubMed  Google Scholar 

  14. Mesbah, K. et al. Identification of a Tbx1/Tbx2/Tbx3 genetic pathway governing pharyngeal and arterial pole morphogenesis. Hum. Mol. Genet. 21, 1217–1229 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Tirosh-Finkel, L., Elhanany, H., Rinon, A. & Tzahor, E. Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development 133, 1943–1953 (2006). This article demonstrates, using fate-mapping and experimental manipulation in the avian embryo, that cranial mesoderm gives rise both to head muscles and outflow tract myocardium.

    Article  CAS  PubMed  Google Scholar 

  16. Tzahor, E. & Lassar, A. B. Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev. 15, 255–260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noden, D. M. & Trainor, P. A. Relations and interactions between cranial mesoderm and neural crest populations. J. Anat. 207, 575–601 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hutson, M. R. & Kirby, M. L. Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res. C Embryo Today 69, 2–13 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Rinon, A. et al. Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development 134, 3065–3075 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Bothe, I. & Dietrich, S. The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis. Dev. Dynam. 235, 2845–2860 (2006).

    Article  CAS  Google Scholar 

  21. Grifone, R. & Kelly, R. G. Heartening news for head muscle development. Trends Genet. 23, 365–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Sambasivan, R., Kuratani, S. & Tajbakhsh, S. An eye on the head: the development and evolution of craniofacial muscles. Development 138, 2401–2415 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Cai, C. L. et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5, 877–889 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harel, I. et al. Distinct origins and genetic programs of head muscle satellite cells. Dev. Cell 16, 822–832 (2009). This article demonstrates the diversity of lineages constituting craniofacial skeletal muscles and their associated satellite cells using a series of Cre lines to genetically trace trunk and cranial myogenic progenitor cells, leading to an Isl1-lineage-based definition of CPF-derived craniofacial muscles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dodou, E., Verzi, M. P., Anderson, J. P., Xu, S. M. & Black, B. L. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131, 3931–3942 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe, Y. et al. Fibroblast growth factor 10 gene regulation in the second heart field by Tbx1, Nkx2–5, and Islet1 reveals a genetic switch for down-regulation in the myocardium. Proc. Natl Acad. Sci. USA 109, 18273–18280 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prall, O. W. et al. An Nkx2–5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128, 947–959 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scambler, P. J. 22q11 deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular development. Pediatr. Cardiol. 31, 378–390 (2010).

    Article  PubMed  Google Scholar 

  29. Liao, J. et al. Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev. Biol. 316, 524–537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, L., Fulcoli, F. G., Tang, S. & Baldini, A. Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ. Res. 105, 842–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hami, D., Grimes, A. C., Tsai, H. J. & Kirby, M. L. Zebrafish cardiac development requires a conserved secondary heart field. Development 138, 2389–2398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kelly, R. G., Jerome-Majewska, L. A. & Papaioannou, V. E. The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Hum. Mol. Genet. 13, 2829–2840 (2004). This paper reports the genetic identification of Tbx1 as a regulator of craniofacial myogenesis in mice, supporting the existence of distinct upstream regulatory hierarchies controlling head and trunk myogenesis.

    Article  CAS  PubMed  Google Scholar 

  33. Kong, P. et al. Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication. Hum. Mol. Genet. 23, 4215–4231 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Castellanos, R., Xie, Q., Zheng, D., Cvekl, A. & Morrow, B. E. Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat. PLoS ONE 9, e95151 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  35. Harel, I. et al. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis. Proc. Natl Acad. Sci. USA 109, 18839–18844 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lescroart, F. et al. Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 137, 3269–3279 (2010). This retrospective lineage analysis provides evidence for the existence of common progenitor cells in the mouse embryo that give rise to myocardium of the right ventricle and first-arch-derived muscles, and to the arterial pole of the heart and second-arch-derived muscles.

    Article  CAS  PubMed  Google Scholar 

  37. Romer, A. S. & Parson, T. S. The Vertebrate Body (Saunder's College Publishing, 1977).

    Google Scholar 

  38. Diogo, R. & Abdala, V. Muscles of Vertebrates: Comparative Anatomy, Evolution, Homologies and Development (CRC, 2010). This monograph provides an overview on the comparative anatomy, evolution and homologies of the head and limb muscles in all major extant vertebrate groups with special focus on the developmental and evolutionary history of the muscles of Homo sapiens.

    Book  Google Scholar 

  39. Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K. & Bruneau, B. G. Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife 3, e03848 (2014).

    Article  PubMed Central  Google Scholar 

  40. Lescroart, F. et al. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nature Cell Biol. 16, 829–840 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tzahor, E. Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields. Dev. Biol. 327, 273–279 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Diogo, R. & Wood, B. A. Comparative Anatomy and Phylogeny of Primate Muscles and Human Evolution (CRC, 2012).

    Book  Google Scholar 

  44. Wachtler, F. & Jacob, M. Origin and development of the cranial skeletal muscles. Bibl. Anat. 1986, 24–46 (1986).

    Google Scholar 

  45. Noden, D. M. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am. J. Anat. 168, 257–276 (1983).

    Article  CAS  PubMed  Google Scholar 

  46. Noden, D. M. & Francis-West, P. The differentiation and morphogenesis of craniofacial muscles. Dev. Dynam. 235, 1194–1218 (2006).

    Article  CAS  Google Scholar 

  47. Diogo, R., Hinits, Y. & Hughes, S. M. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods. BMC Dev. Biol. 8, 24 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Diogo, R., Abdala, V., Lonergan, N. & Wood, B. A. From fish to modern humans — comparative anatomy, homologies and evolution of the head and neck musculature. J. Anat. 213, 391–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuraku, S., Hoshiyama, D., Katoh, K., Suga, H. & Miyata, T. Monophyly of lampreys and hagfishes supported by nuclear DNA-coded genes. J. Mol. Evol. 49, 729–735 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Delarbre, C., Gallut, C., Barriel, V., Janvier, P. & Gachelin, G. Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. Mol. Phylogenet. Evol. 22, 184–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Delarbre, C. et al. The complete nucleotide sequence of the mitochondrial DNA of the agnathan Lampetra fluviatilis: bearings on the phylogeny of cyclostomes. Mol. Biol. Evol. 17, 519–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Heimberg, A. M., Cowper-Sal-lari, R., Semon, M., Donoghue, P. C. & Peterson, K. J. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc. Natl Acad. Sci. USA 107, 19379–19383 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ziermann, J. M., Miyashita, T. & Diogo, R. Cephalic muscles of Cyclostomes (hagfishes and lampreys) and Chondrichthyes (sharks, rays and holocephalans): comparative anatomy and early evolution of the vertebrate head. Zool. J. Linn. Soc. 172, 771–802 (2014).

    Article  Google Scholar 

  54. Adachi, N. & Kuratani, S. Development of head and trunk mesoderm in the dogfish, Scyliorhinus torazame: I. Embryology and morphology of the head cavities and related structures. Evol. Dev. 14, 234–256 (2012).

    Article  PubMed  Google Scholar 

  55. Adachi, N., Takechi, M., Hirai, T. & Kuratani, S. Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol. Dev. 14, 257–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Kuratani, S., Adachi, N., Wada, N., Oisi, Y. & Sugahara, F. Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J. Anat. 222, 41–55 (2013).

    Article  PubMed  Google Scholar 

  57. Kusakabe, R., Kuraku, S. & Kuratani, S. Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins. Dev. Biol. 350, 217–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Kokubo, N. et al. Mechanisms of heart development in the Japanese lamprey, Lethenteron japonicum. Evol. Dev. 12, 34–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Onimaru, K., Shoguchi, E., Kuratani, S. & Tanaka, M. Development and evolution of the lateral plate mesoderm: comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Dev. Biol. 359, 124–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Sauka-Spengler, T., Le Mentec, C., Lepage, M. & Mazan, S. Embryonic expression of Tbx1, a DiGeorge syndrome candidate gene, in the lamprey Lampetra fluviatilis. Gene Expr. Patterns 2, 99–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Tiecke, E. et al. Identification and developmental expression of two Tbx1/10-related genes in the agnathan Lethenteron japonicum. Dev. Genes Evol. 217, 691–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Simões-Costa, M. S. et al. The evolutionary origin of cardiac chambers. Dev. Biol. 277, 1–15 (2005).

    Article  PubMed  CAS  Google Scholar 

  63. Moorman, A. F. & Christoffels, V. M. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 83, 1223–1267 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Ziermann, J. M. & Diogo, R. Cranial muscle development in the model organism Ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny. Anat. Rec. (Hoboken) 296, 1031–1048 (2013).

    Article  Google Scholar 

  65. Matsuoka, T. et al. Neural crest origins of the neck and shoulder. Nature 436, 347–355 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ziermann, J. M. & Diogo, R. Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development. J. Morphol. 275, 398–413 (2014).

    Article  PubMed  Google Scholar 

  67. Shearman, R. M. & Burke, A. C. The lateral somitic frontier in ontogeny and phylogeny. J. Exp. Zool. B Mol. Dev. Evol. 312, 603–612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Minchin, J. E. et al. Oesophageal and sternohyal muscle fibres are novel Pax3-dependent migratory somite derivatives essential for ingestion. Development 140, 2972–2984 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abdala, V. & Diogo, R. Comparative anatomy, homologies and evolution of the pectoral and forelimb musculature of tetrapods with special attention to extant limbed amphibians and reptiles. J. Anat. 217, 536–573 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Edgeworth, F. H. The Cranial Muscles of Vertebrates (The University Press, Cambridge 1935). This 80-year-old publication continues to be the most complete compendium on the anatomical development of the head muscles of vertebrates.

    Google Scholar 

  71. Piotrowski, T. & Nusslein-Volhard, C. The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev. Biol. 225, 339–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Noden, D. M. & Schneider, R. A. Neural crest cells and the community of plan for craniofacial development: historical debates and current perspectives. Adv. Exp. Med. Biol. 589, 1–23 (2006).

    Article  PubMed  Google Scholar 

  73. Theis, S. et al. The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature. Development 137, 2961–2971 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Gegenbaur, C. Elements of Comparative Anatomy (Macmillan, 1878).

    Google Scholar 

  75. Gillis, J. A., Dahn, R. D. & Shubin, N. H. Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. Proc. Natl Acad. Sci. USA 106, 5720–5724 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Putnam, N. H. et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064–1071 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Delsuc, F., Brinkmann, H., Chourrout, D. & Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965–968 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Butler, A. B. The serial transformation hypothesis of vertebrate origins: comment on “The new head hypothesis revisited”. J. Exp. Zool. B Mol. Dev. Evol. 306, 419–424 (2006).

    Article  PubMed  Google Scholar 

  79. Gans, C. Stages in the origin of vertebrates: analysis by means of scenarios. Biol. Rev. Camb. Philos. Soc. 64, 221–268 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Mazet, F. et al. Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes. Dev. Biol. 282, 494–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Mazet, F. & Shimeld, S. M. Molecular evidence from ascidians for the evolutionary origin of vertebrate cranial sensory placodes. J. Exp. Zool. B Mol. Dev. Evol. 304, 340–346 (2005).

    Google Scholar 

  82. Wagner, E. & Levine, M. FGF signaling establishes the anterior border of the Ciona neural tube. Development 139, 2351–2359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Christiaen, L., Bourrat, F. & Joly, J. S. A modular cis-regulatory system controls isoform-specific pitx expression in ascidian stomodaeum. Dev. Biol. 277, 557–566 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Christiaen, L. et al. Pitx genes in Tunicates provide new molecular insight into the evolutionary origin of pituitary. Gene 287, 107–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Abitua, P. B., Wagner, E., Navarrete, I. A. & Levine, M. Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492, 104–107 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Satou, Y., Imai, K. S. & Satoh, N. The ascidian Mesp gene specifies heart precursor cells. Development 131, 2533–2541 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Davidson, B., Shi, W. & Levine, M. Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development 132, 4811–4818 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Christiaen, L. et al. The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320, 1349–1352 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Davidson, B., Shi, W., Beh, J., Christiaen, L. & Levine, M. FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev. 20, 2728–2738 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Beh, J., Shi, W., Levine, M., Davidson, B. & Christiaen, L. FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis. Development 134, 3297–3305 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Christiaen, L., Stolfi, A. & Levine, M. BMP signaling coordinates gene expression and cell migration during precardiac mesoderm development. Dev. Biol. 340, 179–187 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Ragkousi, K., Beh, J., Sweeney, S., Starobinska, E. & Davidson, B. A single GATA factor plays discrete, lineage specific roles in ascidian heart development. Dev. Biol. 352, 154–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stolfi, A. et al. Early chordate origins of the vertebrate second heart field. Science 329, 565–568 (2010). This article reports the discovery of the CPF in C. intestinalis using dynamic imaging and genetics, revealing striking genetic similarities with vertebrate pharyngeal mesoderm giving rise to head muscles and SHF-derived parts of the heart.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tolkin, T. & Christiaen, L. Development and evolution of the ascidian cardiogenic mesoderm. Curr. Top. Dev. Biol. 100, 107–142 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, W., Razy-Krajka, F., Siu, E., Ketcham, A. & Christiaen, L. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol. 11, e1001725 (2013). This paper identified an ontogenetic motif regulating cardiac and pharyngeal skeletal muscle development in C. intestinalis through asymmetric cell division events and anatagonistic interactions between conserved master regulators of cardiopharyngeal fate.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Razy-Krajka, F. et al. Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. Dev. Cell 29, 263–276 (2014). This paper demonstrated that the multipotent cardiopharyngeal progenitors of C. intestinalis are multilineage primed and activate both early heart and pharyngeal muscle regulators that segregate to their corresponding precursors following asymmetric cell divisions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Harafuji, N., Keys, D. N. & Levine, M. Genome-wide identification of tissue-specific enhancers in the Ciona tadpole. Proc. Natl Acad. Sci. USA 99, 6802–6805 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heude, E. et al. Jaw muscularization requires Dlx expression by cranial neural crest cells. Proc. Natl Acad. Sci. USA 107, 11441–11446 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yasui, K., Kaji, T., Morov, A. R. & Yonemura, S. Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum. J. Morphol. 275, 465–477 (2014).

    Article  PubMed  Google Scholar 

  100. Goldschmidt, R. Amphioxides. Wiss Ergeb Dtsch Tiefsee-Expedition [in German] 12, 1–92 (1905).

    Google Scholar 

  101. Holland, N. D., Venkatesh, T. V., Holland, L. Z., Jacobs, D. K. & Bodmer, R. AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev. Biol. 255, 128–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Mahadevan, N. R., Horton, A. C. & Gibson-Brown, J. J. Developmental expression of the amphioxus Tbx1/10 gene illuminates the evolution of vertebrate branchial arches and sclerotome. Dev. Genes Evol. 214, 559–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Jackman, W. R., Langeland, J. A. & Kimmel, C. B. islet reveals segmentation in the Amphioxus hindbrain homolog. Dev. Biol. 220, 16–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Belgacem, M. R., Escande, M. L., Escriva, H. & Bertrand, S. Amphioxus Tbx6/16 and Tbx20 embryonic expression patterns reveal ancestral functions in chordates. Gene Expr. Patterns 11, 239–243 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Willey, A. Amphioxus and the Ancestery of the Vertebrates (Macmillan, 1894).

    Google Scholar 

  106. Schubert, M., Meulemans, D., Bronner-Fraser, M., Holland, L. Z. & Holland, N. D. Differential mesodermal expression of two amphioxus MyoD family members (AmphiMRF1 and AmphiMRF2). Gene Expr. Patterns 3, 199–202 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Mazet, F., Masood, S., Luke, G. N., Holland, N. D. & Shimeld, S. M. Expression of AmphiCoe, an amphioxus COE/EBF gene, in the developing central nervous system and epidermal sensory neurons. Genesis 38, 58–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Holland, L. Z., Schubert, M., Kozmik, Z. & Holland, N. D. AmphiPax3/7, an amphioxus paired box gene: insights into chordate myogenesis, neurogenesis, and the possible evolutionary precursor of definitive vertebrate neural crest. Evol. Dev. 1, 153–165 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Hirano, T. & Nishida, H. Developmental fates of larval tissues after metamorphosis in ascidian Halocynthia roretzi. I. Origin of mesodermal tissues of the juvenile. Dev. Biol. 192, 199–210 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Tokuoka, M., Satoh, N. & Satou, Y. A bHLH transcription factor gene, Twist-like1, is essential for the formation of mesodermal tissues of Ciona juveniles. Dev. Biol. 288, 387–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Kuratani, S. Evolution of the vertebrate jaw from developmental perspectives. Evol. Dev. 14, 76–92 (2012).

    Article  PubMed  Google Scholar 

  112. Mallatt, J. The origin of the vertebrate jaw: neoclassical ideas versus newer, development-based ideas. Zoolog. Sci. 25, 990–998 (2008).

    Article  PubMed  Google Scholar 

  113. Valentine, J. W. On the Origin of Phyla (Univ. Chicago Press, 2004).

    Google Scholar 

  114. Gillis, J. A., Fritzenwanker, J. H. & Lowe, C. J. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proc R. Soc. B 279, 237–246 (2012).

    Article  PubMed  Google Scholar 

  115. Haun, C., Alexander, J., Stainier, D.Y. & Okkema, P. G. Rescue of Caenorhabditis elegans pharyngeal development by a vertebrate heart specification gene. Proc. Natl Acad. Sci. USA. 95, 5072–5075 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Boukhatmi, H. et al. An Org-1-Tup transcriptional cascade reveals different types of alary muscles connecting internal organs in Drosophila. Development 141, 3761–3771 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Crozatier, M. & Vincent, A. Requirement for the Drosophila COE transcription factor Collier in formation of an embryonic muscle: transcriptional response to notch signalling. Development 126, 1495–1504 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Enriquez, J., de Taffin, M., Crozatier, M., Vincent, A. & Dubois, L. Combinatorial coding of Drosophila muscle shape by Collier and Nautilus. Dev. Biol. 363, 27–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Mann, T., Bodmer, R. & Pandur, P. The Drosophila homolog of vertebrate Islet1 is a key component in early cardiogenesis. Development 136, 317–326 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Schaub, C. & Frasch, M. Org-1 is required for the diversification of circular visceral muscle founder cells and normal midgut morphogenesis. Dev. Biol. 376, 245–259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schaub, C., Nagaso, H., Jin, H. & Frasch, M. Org-1, the Drosophila ortholog of Tbx1, is a direct activator of known identity genes during muscle specification. Development 139, 1001–1012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lescroart, F. & Meilhac, S. M. Cell lineages, growth and repair of the mouse heart. Results Probl. Cell Differ. 55, 263–289 (2012).

    Article  PubMed  Google Scholar 

  123. Lescroart, F., Mohun, T., Meilhac, S. M., Bennett, M. & Buckingham, M. Lineage tree for the venous pole of the heart: clonal analysis clarifies controversial genealogy based on genetic tracing. Circ. Res. 111, 1313–1322 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Lacalli, T. C. & Holland, L. Z. The developing dorsal ganglion of the salp Thalia democratica, and the nature of the ancestral chordate brain. Phil. Trans. R. Soc. Lond. B 353, 1943–1967 (1998).

    Article  Google Scholar 

  125. Gee, H. in Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny, Genetics and Development (ed. Ahlberg, P. E.) 1–14 (Taylor & Francis, 2001).

    Google Scholar 

Download references

Acknowledgements

We thank T. Miyashita and F. Razy-Krajka for their detailed reviews of the manuscript. We are thankful to the Dean of Howard University (HU) College of Medicine, M. Johnson, and the Chair of HU Department of Anatomy, D. Orlic, for helping to organize, financially and logistically, the First Evo-Devo Meeting On Heart and Head Muscles at HU (May, 2014) that led to the publication of this Review. We also thank the other participants at the workshop: A. Kahana, P. Okkema, A. Vincent, T. Hirasawa, S. Tajbakhsh, S. Dietrich and R. Knight. L.C. is supported by National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) grant R01GM096032 and NIH/National Heart, Lung and Blood Instiute (NHLBI) grant R01HL108643, E.T. by the European Research Council and Israel Science Foundation, R.D. and J.Z. by HU College of Medicine, R.G.K. by Inserm, the Agence Nationale pour la Recherche, Association Française contre les Myopathies and Fondation pour la Recherche Médicale, and M.L. by NIH grant NS076542.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Diogo, Robert G. Kelly, Lionel Christiaen or Eldad Tzahor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diogo, R., Kelly, R., Christiaen, L. et al. A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 520, 466–473 (2015). https://doi.org/10.1038/nature14435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14435

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing