Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

H2D+ observations give an age of at least one million years for a cloud core forming Sun-like stars

Abstract

The age of dense interstellar cloud cores, where stars and planets form, is a crucial parameter in star formation and difficult to measure. Some models predict rapid collapse1,2, whereas others predict timescales of more than one million years (ref. 3). One possible approach to determining the age is through chemical changes as cloud contraction occurs, in particular through indirect measurements of the ratio of the two spin isomers (ortho/para) of molecular hydrogen, H2, which decreases monotonically with age4,5,6. This has been done for the dense cloud core L183, for which the deuterium fractionation of diazenylium (N2H+) was used as a chemical clock to infer7 that the core has contracted rapidly (on a timescale of less than 700,000 years). Among astronomically observable molecules, the spin isomers of the deuterated trihydrogen cation, ortho-H2D+ and para-H2D+, have the most direct chemical connections to H2 (refs 8, 9, 10, 11, 12) and their abundance ratio provides a chemical clock that is sensitive to greater cloud core ages. So far this ratio has not been determined because para-H2D+ is very difficult to observe. The detection of its rotational ground-state line has only now become possible thanks to accurate measurements of its transition frequency in the laboratory13, and recent progress in instrumentation technology14,15. Here we report observations of ortho- and para-H2D+ emission and absorption, respectively, from the dense cloud core hosting IRAS 16293-2422 A/B, a group of nascent solar-type stars (with ages of less than 100,000 years). Using the ortho/para ratio in conjunction with chemical models, we find that the dense core has been chemically processed for at least one million years. The apparent discrepancy with the earlier N2H+ work7 arises because that chemical clock turns off sooner than the H2D+ clock, but both results imply that star-forming dense cores have ages of about one million years, rather than 100,000 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed and modelled H2D+ spectra.
Figure 2: Modelled ortho/para H2D+ abundance ratio.

Similar content being viewed by others

References

  1. Ward-Thompson, D. et al. An observational perspective of low-mass dense cores. II: Evolution toward the initial mass function. In Protostars and Planets V (eds Reipurth, B., Jewitt, A. P. & Keil, K. ) 33–46 (Univ. Arizona Press, 2007)

  2. Hartmann, L., Ballesteros-Paredes, J. & Heitsch, F. Rapid star formation and global gravitational collapse. Mon. Not. R. Astron. Soc. 420, 1457–1461 (2012)

    ADS  Google Scholar 

  3. Mouschovias, T. Ch., Tassis, K. & Kunz, M. W. Observational constraints on the ages of molecular clouds and the star formation timescale: ambipolar-diffusion-controlled or turbulence-induced star formation? Astrophys. J. 646, 1043 (2006)

    ADS  CAS  Google Scholar 

  4. Flower, D. R. & Watt, G. D. On the ortho-H2/para-H2 ratio in molecular clouds. Mon. Not. R. Astron. Soc. 209, 25–31 (1984)

    ADS  CAS  Google Scholar 

  5. Flower, D. R., Pineau Des Forêts, G. & Walmsley, C. M. The importance of the ortho:para H2 ratio for the deuteration of molecules during pre-protostellar collapse. Astron. Astrophys. 449, 621–629 (2006)

    ADS  CAS  Google Scholar 

  6. Pagani, L., Roueff, E. & Lesaffre, P. Ortho-H2 and the age of interstellar dark clouds. Astrophys. J. 739, L35 (2011)

    ADS  Google Scholar 

  7. Pagani, L. et al. Ortho-H2 and the age of prestellar cores. Astron. Astrophys. 551, A38 (2013)

    Google Scholar 

  8. Pagani, L., Salez, M. & Wennier, P. G. The chemistry of H2D+ in cold clouds. Astron. Astrophys. 258, 479–488 (1992)

    ADS  CAS  Google Scholar 

  9. Gerlich, D., Herbst, E. & Roueff, E. H3++HD → H2D++H2: low-temperature laboratory measurements and interstellar implications. Planet. Space Sci. 50, 1275–1285 (2002)

    ADS  CAS  Google Scholar 

  10. Hugo, E., Asvany, O., Harju, J. & Schlemmer, S. Toward understanding of H3+ isotopic and nuclear spin fractionations in cold space. In Molecules in Space and Laboratory (eds Lemaire, J. L. & Combes, F. ) 119 (S. Diana, 2007)

    Google Scholar 

  11. Hugo, E., Asvany, O. & Schlemmer, S. H3++H2 isotopic system at low temperatures: microcanonical model and experimental study. J. Chem. Phys. 130, 164302 (2009)

    ADS  PubMed  Google Scholar 

  12. Sipilä, O. et al. Modelling line emision of deuterated H3+ from prestellar cores. Astron. Astrophys. 509, A98 (2010)

    Google Scholar 

  13. Asvany, O. et al. High-resolution rotational spectroscopy in a cold ion trap: H2D+ and D2H+. Phys. Rev. Lett. 100, 233004 (2008)

    ADS  PubMed  Google Scholar 

  14. Heyminck, S. et al. GREAT: the SOFIA high-frequency heterodyne instrument. Astron. Astrophys. 542, L1 (2012)

    ADS  Google Scholar 

  15. Young, E. T. et al. Early science with SOFIA, the Stratospheric Observatory For Infrared Astronomy. Astrophys. J. 749, L17 (2012)

    ADS  Google Scholar 

  16. Boreiko, R. T. & Betz, A. L. A search for the rotational transitions of H2D+ at 1370 GHz and H3O+ at 985 GHz. Astrophys. J. 405, L39–L42 (1993)

    ADS  CAS  Google Scholar 

  17. Amano, T. & Hirao, T. Accurate rest frequencies of submillimeter-wave lines of H2D+ and D2H+. J. Mol. Spec. 233, 7 (2005)

    ADS  CAS  Google Scholar 

  18. Güsten, R. et al. The Atacama Pathfinder EXperiment (APEX)—a new submillimeter facility for southern skies. Astron. Astrophys. 454, L13 (2006)

    ADS  Google Scholar 

  19. Wootten, A. The duplicity of IRAS 16293–2422: a protobinary star? Astrophys. J. 337, 858–864 (1989)

    ADS  CAS  Google Scholar 

  20. Girart, J. M., Estalella, R., Palau, A., Torrelles, J. M. & Rao, R. On the origin of the molecular outflows in IRAS 16293–2422. Astrophys. J. 780, L11 (2014)

    ADS  Google Scholar 

  21. Stark, R. et al. Probing the early stages of low-mass star formation in LDN 1689N: dust and water in IRAS 16293–2422A, B, and E. Astrophys. J. 608, 341–364 (2004)

    ADS  CAS  Google Scholar 

  22. Crimier, N. et al. The solar type protostar IRAS16293–2422: new constraints on the physical structure. Astron. Astrophys. 519, A65 (2010)

    Google Scholar 

  23. Keto, E. & Caselli, P. Dynamics and depletion in thermally supercritical starless cores. Mon. Not. R. Astron. Soc. 402, 1625 (2010)

    ADS  CAS  Google Scholar 

  24. Lombardi, M., Lada, C. J. & Alves, J. Hipparcos distance estimates of the Ophiuchus and the Lupus cloud complexes. Astron. Astrophys. 480, 785–792 (2008)

    ADS  Google Scholar 

  25. Sipilä, O., Caselli, P. & Harju, J. HD depletion in starless cores. Astron. Astrophys. 554, A92 (2013)

    ADS  Google Scholar 

  26. Juvela, M. Non-LTE radiative transfer in clumpy molecular clouds. Astron. Astrophys. 322, 943–961 (1997)

    ADS  Google Scholar 

  27. Le Gal, R. et al. Interstellar chemistry of nitrogen hydrides in dark clouds. Astron. Astrophys. 562, A83 (2014)

    Google Scholar 

  28. Caselli, P. et al. Survey of ortho-H2D+ (11,0-11,1) in dense cloud cores. Astron. Astrophys. 492, 703–718 (2008)

    ADS  CAS  Google Scholar 

  29. de Graauw, T. et al. The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI). Astron. Astrophys. 518, L6 (2010)

    ADS  Google Scholar 

  30. Caselli, P., van der Tak, F. F. S., Ceccarelli, C. & Bacmann, A. Abundant H2D+ in the pre-stellar core L1544. Astron. Astrophys. 403, L37–L41 (2003)

    ADS  CAS  Google Scholar 

  31. André, Ward-Thompson, D. & Barsony, M. From prestellar cores to protostars: the initial conditions of star formation. In Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S. ) 59–96 (Univ. Arizona Press, 2000)

    Google Scholar 

  32. Klein, B. et al. High-resolution wide-band fast Fourier transform spectrometers. Astron. Astrophys. 542, L3 (2012)

    ADS  Google Scholar 

  33. Guan, X. et al. GREAT/SOFIA atmospheric calibration. Astron. Astrophys. 542, L4 (2012)

    ADS  Google Scholar 

  34. Heyminck, S., Kasemann, C., Güsten, R., de Lange, G. & Graf, U. U. The first-light APEX submillimeter heterodyne instrument FLASH. Astron. Astrophys. 454, L21 (2006)

    ADS  CAS  Google Scholar 

  35. Klein, B. et al. The APEX digital Fast Fourier Transform spectrometer. Astron. Astrophys. 454, L29 (2006)

    ADS  Google Scholar 

  36. Coutens, A. et al. Heavy water stratification in a low-mass protostar. Astron. Astrophys. 553, A75 (2013)

    Google Scholar 

  37. Grussie, F. et al. The low-temperature nuclear spin equilibrium of H3+ in collisions with H2 . Astron. Astrophys. 759, 21 (2012)

    Google Scholar 

  38. Honvault, P., Jorfi, M., González-Lezana, T., Faure, A. & Pagani, L. Ortho-para H2 conversion by proton exchange at low temperature: an accurate quantum mechanical study. Phys. Rev. Lett. 107 023201 (2011); Erratum: Phys. Rev. Lett. 108, 109903 (2012)

    ADS  CAS  PubMed  Google Scholar 

  39. Pagani, L. et al. Chemical modeling of L183/L134N: an estimate of the ortho/para H2 ratio. Astron. Astrophys. 494, 623–636 (2009)

    ADS  CAS  Google Scholar 

  40. Semenov, D. et al. Chemistry in disks. IV. Benchmarking gas-grain chemical models with surface reactions. Astron. Astrophys. 522, A42 (2010)

    Google Scholar 

  41. Albertsson, T. et al. First time-dependent study of H2 and H3+ ortho-para chemistry in the diffuse ISM. Astrophys. J. 787, 44 (2014)

    ADS  Google Scholar 

  42. Crabtree, K. N., Indriolo, N., Kreckel, H., Tom, B. A. & McCall, B. J. On the ortho:para ratio of H3+ in diffuse molecular clouds. Astrophys. J. 729, 15 (2011)

    ADS  Google Scholar 

  43. André, P. et al. From filamentary clouds to prestellar cores to the stellar IMF: initial highlights from the Herschel Gould Belt Survey. Astron. Astrophys. 518, L102 (2010)

    ADS  Google Scholar 

  44. Sadavoy, S. I. et al. Class 0 protostars in the Perseus molecular cloud: a correlation between the youngest protostars and the dense gas distribution. Astrophys. J. 787, L18 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

GREAT is a development by the MPI für Radioastronomie and the KOSMA/Universität zu Köln, in cooperation with the MPI für Sonnensystemforschung and the DLR Institut für Planetenforschung. SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. APEX, the Atacama Pathfinder Experiment, is a collaboration between the Max Planck Institut für Radioastronomie (MPIfR), the Onsala Space Observatory (OSO), and the European Southern Observatory (ESO). This work has been supported by the Collaborative Research Centre 956, funded by the Deutsche Forschungsgemeinschaft (DFG). O.S. and J.H. acknowledge support from the Academy of Finland grants 132291 and 250741. P.C. acknowledges the financial support of the European Research Council (ERC; project PALs 320620).

Author information

Authors and Affiliations

Authors

Contributions

S.S., S.B., O.A., P.C., J.H., O.S. and J.S. jointly designed the study and proposed the SOFIA observations. E.T.C. performed the calibration and the analysis of the SOFIA data. C.E.H. was instrumental in developing the GREAT receiver. T.K. and K.M.M. made the APEX observations and analysed these data. O.S. carried out the chemistry and radiative transfer modelling with help from J.H. The paper was jointly written by S.B., J.H., O.S., P.C. and S.S. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Sandra Brünken or Stephan Schlemmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Temperature and density distribution of the source model.

Physical model of IRAS 16293-2422 A/B, consisting of a widely used core model22 and a low-density ambient cloud. a, The number density n(H2) as a function of radius. b, The radial profile of the kinetic temperature, T. The ambient cloud is assumed to have n(H2) = 104 cm−3 and T = 10 K. The shaded interval, between a radius of 3,000 and 6,100 au, represents the outer envelope of the core, which dominates the observed para-H2D+ absorption and ortho-H2D+ emission.

Extended Data Figure 2 The relationship between ortho/para-H2D+ and ortho/para-H2.

The ortho/para-H2D+ ratio as a function of ortho/para-H2 resulting from chemistry simulations for different values of the kinetic temperature T, indicated with colours. The dashed curves represent the approximation given by the analytical formula from Hugo et al.10.

Extended Data Figure 3 N2D+/N2H+ and ortho/para-H2D+ as functions of ortho/para-H2, for different values of T and n(H2).

a, The N2D+/N2H+ abundance ratio versus the ortho/para H2 ratio for selected values of the kinetic temperature, T, and the H2 number density, n(H2). b: The ortho/para H2D+ ratio versus the ortho/para H2 ratio for different temperatures and densities. One can see that this relationship depends on T but not on n(H2).

Extended Data Figure 4 N2D+/N2H+ and ortho/para-H2D+ as functions of ortho/para-H2, for different values of T and ζ.

a, The N2D+/N2H+ abundance ratio versus the ortho/para H2 ratio for selected values of the kinetic temperature, T, and the cosmic ray ionization rate, ζ. b, The same for the ortho/para H2D+ ratio versus the ortho/para H2 ratio for different temperatures and densities n(H2). Hardly any dependence on ζ is seen except at the lowest temperatures.

Extended Data Figure 5 The H2 spin temperature.

Variation of the H2 spin temperature Tspin as a function of kinetic temperature and time in a dark cloud according to our gas-grain chemistry model. The corresponding ortho/para-H2 is indicated on the right. The gas density, n(H2) = 105 cm−3, and the visual extinction, AV = 10 mag, are kept constant. Ortho/para-H2 tends for long evolutionary times towards the thermal values (dashed line) above Tkin ≈ 12 K. The blue-hatched region indicates the T range applicable to the dense core surrounding IRAS 16293-2422 A/B (between a radius of 3,000 and 6,100 au).

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brünken, S., Sipilä, O., Chambers, E. et al. H2D+ observations give an age of at least one million years for a cloud core forming Sun-like stars. Nature 516, 219–221 (2014). https://doi.org/10.1038/nature13924

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13924

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing