







    Skip to main content




    
        
        Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
            the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
            Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
            and JavaScript.


    




    

    
            

            
                
                    Advertisement

                    
        
            
    
        
            
                [image: Advertisement]
        

    


        
    
                

            
        

    
        
            
                
                    
                    
                    
                        
                        
                            
                                
                                [image: Nature]
                            
                        
                    
                    

                    
                    	
                            
                                View all journals
                            
                        
	
                            
                                Search
                            
                        
	
                            
                                Log in
                            
                        


                

            

        

        
            
                
                    
                        	
                                    
                                        Explore content
                                    
                                
	
                                    
                                        About the journal
                                    
                                
	
                                        
                                            Publish with us
                                        
                                    
	
                                    
                                        Subscribe
                                    
                                


                        	
                                    
                                        Sign up for alerts
                                    
                                
	
                                    
                                            RSS feed
                                    
                                


                    

                

            

        
    


    
    
        
            
                	nature



	letters

	
                                    article


    
        
        
            
            
                
                    	Letter
	Published: 06 July 2014



                    Processing properties of ON and OFF pathways for Drosophila motion detection

                    	Rudy Behnia1, 
	Damon A. Clark2,3, 
	Adam G. Carter4, 
	Thomas R. Clandinin3 & 
	â€¦
	Claude Desplan1,5Â 

Show authors

                    

                    
                        
    Nature

                        volumeÂ 512,Â pages 427â€“430 (2014)Cite this article
                    

                    
        
            	
                        13k Accesses

                    
	
                        168 Citations

                    
	
                            21 Altmetric

                        
	
                    Metrics details

                


        

    
                    
                

                
    
        Subjects

        	Motion detection


    


                
    
    

    
    

                
            


        
            Abstract
The algorithms and neural circuits that process spatio-temporal changes in luminance to extract visual motion cues have been the focus of intense research. An influential model, the Hassensteinâ€“Reichardt correlator1, relies on differential temporal filtering of two spatially separated input channels, delaying one input signal with respect to the other. Motion in a particular direction causes these delayed and non-delayed luminance signals to arrive simultaneously at a subsequent processing step in the brain; these signals are then nonlinearly amplified to produce a direction-selective response. Recent work in Drosophila has identified two parallel pathways that selectively respond to either moving light or dark edges2,3. Each of these pathways requires two critical processing steps to be applied to incoming signals: differential delay between the spatial input channels, and distinct processing of brightness increment and decrement signals. Here we demonstrate, using in vivo patch-clamp recordings, that four medulla neurons implement these two processing steps. The neurons Mi1 and Tm3 respond selectively to brightness increments, with the response of Mi1 delayed relative to Tm3. Conversely, Tm1 and Tm2 respond selectively to brightness decrements, with the response of Tm1 delayed compared with Tm2. Remarkably, constraining Hassensteinâ€“Reichardt correlator models using these measurements produces outputs consistent with previously measured properties of motion detectors, including temporal frequency tuning and specificity for light versus dark edges. We propose that Mi1 and Tm3 perform critical processing of the delayed and non-delayed input channels of the correlator responsible for the detection of light edges, while Tm1 and Tm2 play analogous roles in the detection of moving dark edges. Our data show that specific medulla neurons possess response properties that allow them to implement the algorithmic steps that precede the correlative operation in the Hassensteinâ€“Reichardt correlator, revealing elements of the long-sought neural substrates of motion detection in the fly.
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                    Figure 1: Motion detection and the fly optic lobe.[image: ]


Figure 2: Mi1/Tm3 respond selectively to brightness increments while Tm1/Tm2 respond selectively to brightness decrements. [image: ]


Figure 3: Mi1/Tm3 and Tm1/Tm2 respond with different delays and nonlinearities to a Gaussian noise stimulus.[image: ]


Figure 4: Modelling Mi1/Tm3 and Tm1/Tm2 as the delayed and non-delayed channels of light edges and dark edges correlators.[image: ]
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Extended data figures and tables

Extended Data Figure 1 Representative raw traces of responses to flashes of light of different duration from dark.
a, Top: response of an Mi1 neuron to 200 ms, four consecutive 250 ms and 1 s full-field flashes of light from dark. Bottom: same as top for a Tm3 neuron. b, Same as a for a Tm1 neuron and a Tm2 neuron. c, Box plots illustrating the distribution of the OFF response as a percentage of the ON response for Mi1 (n = 7) and Tm3 (n = 10) and the ON response as a percentage of the OFF response for Tm1 (n = 10) and Tm2 (n = 11) averaged in Fig. 1. Black line, median; coloured line, average.


Extended Data Figure 2 Mi1, Tm3, Tm1 and Tm2 neurons encode stable information about luminance.
a, Top left: averaged evoked responses (Â± s.e.m.) of Mi1 (n = 7) in response to 5 s steps of light from dark to grey (0.5 intensity) to light to grey to dark. Top right: excerpts from the left trace where the pre-contrast change voltages have been matched. Bottom left and right: same as above for Tm3 (n = 10). b, Tonic component (average difference in membrane potential between post- and pre-contrast change between 4 and 5 s after contrast change) as a percentage of the maximum peak response for brightness increments of the corresponding contrast difference. Error bars, s.e.m. c, d, Same as a and b for Tm1 (n = 9) and Tm2 (n = 7). The tonic component was measured as a percentage of the peak response for brightness decrements of the corresponding contrast difference. In all cases, expect for those marked with a cross, the distributions are significantly different from zero (P < 0.05).


Extended Data Figure 3 Mi1, Tm3, Tm1 and Tm2 are not direction selective.
a, Top: response of an Mi1 neuron to a white bar moving rightwards, upwards, leftwards and downwards at 100Â° sâˆ’1 on a dark background. Bottom: same as top for a Tm3 neuron. b, Top: response of a Tm1 neuron to a black bar moving rightwards, upwards, leftwards and downwards at 100Â° sâˆ’1 on a light background. Bottom: same as top for a Tm2 neuron. c, Average amplitude of the voltage response as a function of angle (0Â°, 90Â°, 180Â° and 270Â°) for Mi1 (n = 2), Tm3 (n = 2), Tm1 (n = 2) and Tm2 (n = 3) for a bar moving at 100Â° sâˆ’1 (solid lines) and 400Â° sâˆ’1 (dashed lines). The response amplitude was independent of the direction of motion in all cases.


Extended Data Figure 4 The response of Mi1, Tm3, Tm1 and Tm2 to a Gaussian noise stimulus is very reliable.
a, Left: response of an Mi1 neuron to three consecutive 10 s presentations of an approximate Gaussian noise stimulus with 50% standard deviation and correlation time of 10 ms. Right: same as left for Tm3. b, Same as a for Tm1 (left) and Tm2 (right). c, Coherence of the measured responses in the four cell types. Deviations from 1 mean that variance in the output is not entirely accounted for by a linear transformation of the input. This can be caused by noise in the response unrelated to the input, or by the nonlinearities in the system response that we measured. The linear filter amplitude for each frequency is distinct from coherence, and those amplitudes as a function of frequency are plotted in Extended Data Fig. 7a, b.


Extended Data Figure 5 Individual filters and nonlinearities from the Gaussian noise analysis of Mi1, Tm3, Tm1 and Tm2.
a, Individual filters (in grey) overlaid on the average filter (Â± s.e.m.) for Mi1 neurons. b, Individual nonlinearities (in grey) overlaid on the averaged nonlinearity (Â± s.e.m.) for Mi1 neurons. c, d, Same as a and b for Tm3. e, f, Same as a and b for Tm1. g, h, Same as a and b for Tm2.


Extended Data Figure 6 Spatio-temporal analysis of Mi, Tm3, Tm1 and Tm2.
a, Representative receptive fields of Mi1, Tm3, Tm1 and Tm2 neurons shown as a heat map of 256 pixels using the r value of linear prediction for each pixel intensity. b, Average temporal filters (Â± s.e.m.) extracted from the highest responding pixels for each neuron for Mi1 (n = 4) and Tm3 (n = 8) (see Methods). The peaks of the filters, with the average timing, are enlarged in the inset. c, Average nonlinearities over several neurons for both Mi1 and Tm3. To obtain each neuronâ€™s nonlinearity, the neuronâ€™s measured response was plotted against the linear prediction from the relevant pixels. Error bars, s.e.m. A line of slope 1 is shown in black. d, e, Equivalent to b and c for Tm1 (n = 8) and Tm2 (n = 7).


Extended Data Figure 7 Numerical and analytical HRC responses.
a, b, We plot three terms in equation (2) of the Methods, and the total HRC response, using the empirical measurements for Tm1/Tm2 and Mi1/Tm3 as the two input arms for the correlator (f2(t) and f1(t), respectively). The analytical results computed here match the numerical ones shown in Fig. 4. Here and in all subsequent plots, we normalize the filter values so that they have a maximum of 1, and compute the relative HRC response from those normalized filters and the phase term. c, The same three components of equation (2) are plotted in the special case where f1(t) = Î´(t) and [image: ]. We plot the result with Ï„ = 150 ms, so that the peak response occurs at âˆ¼1 Hz. d, The same components of equation (2) are plotted in the case where both f1(t) and f2(t) are first-order low-pass filters, with time constants of 40 ms and 55 ms, respectively. e, False-colour plot of the temporal frequency optimum for various combinations of Ï„1 and Ï„2. Many combinations result in frequency optima near 1 Hz. f, The value of the relative HRC response at the optimal frequency in e is plotted for those same combinations of Ï„1 and Ï„2. To compute this, temporal filters have a maximum gain of 1, as in aâ€“d. The responses become small primarily when the phase term becomes small. When the phase term is very small, the subtraction performed by the HRC is susceptible to noise, since it can be subtracting two larger numbers to yield the small difference. Therefore, filter combinations with very small differences seem less biologically plausible than those with larger phase terms. The phase terms for the two model HRCs in a and b are between 0.2 and 0.4 in the 1-Hz region, larger than for the toy model shown in d.


Extended Data Figure 8 686-Gal4 labels Mi1 neurons and R13E12-Gal4 is specific to Tm3 neurons.
a, Confocal image of a single Mi1 neuron obtained through a flip-out clone procedure with 686-Gal4. Mi1 neurons present processes at the level of M1 and M5 and terminate in the most proximal layers of the medulla. This line also sparsely labels Tm2 neurons, which were distinguishable both visually and functionally. b, Confocal image of twin-spot MARCM clones obtained using R13E12-Gal4. Tm3 neurons present processes at the medulla layers M1 and M5 and project to proximal layers of the medulla and superficial layers of the lobula.


Extended Data Figure 9 Evoked response of â€˜tonicâ€™ Mi1 neurons.
a, Average evoked responses (Â± s.e.m.) of â€˜tonicâ€™ Mi1 (n = 9) in response to 200 ms, four consecutive 250 ms and 1 s full-field flashes of light from dark. b, Average evoked responses (Â± s.e.m.) of â€˜tonicâ€™ Mi1 (n = 7) in response to 5 s steps of light. c, Top: 2 s excerpt of the intensity signal from the 10 s full-field Gaussian noise stimulus. Correlation time is 10 ms. Bottom: average voltage response (Â± s.e.m.) of â€˜tonicâ€™ Mi1 (n = 8) in response to the 2 s noise stimulus on top. The black trace corresponds to the average predicted linear response obtained by convolving the stimulus with the filters in d (Â± s.e.m.). d, Average temporal filters (Â± s.e.m.) extracted from the data in c that best predict the measured response of â€˜tonicâ€™ Mi1 as a function of contrast history. Individual filters are shown in grey. e, Nonlinearities for â€˜tonicâ€™ Mi1 cells. Actual responses are plotted against their linear predicted responses. Individual cell nonlinearities in grey; mean and s.e.m. are represented by the coloured line and patch. A line of slope 1 is shown in black. f, Average temporal filters (Â± s.e.m.) extracted from the highest-responding pixels for each â€˜tonicâ€™ Mi1 neuron in the spatio-temporal experiments. g, Averaged actual responses of â€˜tonicâ€™ Mi1 plotted against their averaged linear predicted responses in the spatio-temporal experiments. Error bars, s.e.m. A line of slope 1 is shown in black.
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        Editorial Summary
Motion detector neurons identified
Motion detection by the fly visual system has long been proposed to rely on a simple neuronal circuit â€” the Reichardt detector, which connects adjacent sensory neurons with a slight temporal delay â€” but electrophysiological evidence has been lacking. Claude Desplan and colleagues have performed patch-clamp recordings in the Drosophila medulla in vivo and identify four neurons â€” Mi1, Tm3, Tm1 and Tm2 â€” that process delayed and non-delayed inputs to detect light and dark moving edges. Recent neuro-anatomical results have suggested that parts of the motion detection mechanism in the mammalian retina resemble fly Reichardt circuitry.
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