Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interacting supernovae from photoionization-confined shells around red supergiant stars

Abstract

Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings1,2,3,4. This picture has been challenged by the discovery of a dense and almost static shell5 that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse’s wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind6 and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circumstellar structures produced when a runaway red supergiant is exposed to an external ionizing radiation field.
Figure 2: Time evolution of the photoionization-confined shell around Betelgeuse for spherically symmetric simulations with three different ionizing fluxes.
Figure 3: Simulated observations of neutral hydrogen in the photoionization-confined shell around Betelgeuse.
Figure 4: Predicted luminosity evolution of supernovae interacting with massive photoionization-confined shells, compared with observations of two core-collapse supernovae.

Similar content being viewed by others

References

  1. Noriega-Crespo, A., van Buren, D., Cao, Y. & Dgani, R. A parsec-size bow shock around Betelgeuse. Astron. J. 114, 837–840 (1997)

    Article  CAS  ADS  Google Scholar 

  2. Ueta, T. et al. AKARI/FIS mapping of the ISM-wind bow shock around α Orionis. Pub. Astron. Soc. Jpn 60, S407–S413 (2008)

    Article  CAS  Google Scholar 

  3. Mohamed, S., Mackey, J. & Langer, N. 3D simulations of Betelgeuse’s bow shock. Astron. Astrophys. 541, A1 (2012)

    Article  ADS  Google Scholar 

  4. Decin, L. et al. The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel. I. Evidence of clumps, multiple arcs, and a linear bar-like structure. Astron. Astrophys. 548, A113 (2012)

    Article  CAS  Google Scholar 

  5. Le Bertre, T., Matthews, L. D., Gérard, E. & Libert, Y. Discovery of a detached H I gas shell surrounding α Orionis. Mon. Not. R. Astron. Soc. 422, 3433–3443 (2012)

    Article  CAS  ADS  Google Scholar 

  6. Kahn, F. D. The acceleration of interstellar clouds. Bull. Astron. Inst. Neth. 12, 187–200 (1954)

    ADS  Google Scholar 

  7. Smartt, S. J. Progenitors of core-collapse supernovae. Annu. Rev. Astron. Astrophys. 47, 63–106 (2009)

    Article  CAS  ADS  Google Scholar 

  8. Langer, N. Presupernova evolution of massive single and binary stars. Annu. Rev. Astron. Astrophys. 50, 107–164 (2012)

    Article  CAS  ADS  Google Scholar 

  9. Dougherty, S. M., Clark, J. S., Negueruela, I., Johnson, T. & Chapman, J. M. Radio emission from the massive stars in the galactic super star cluster Westerlund 1. Astron. Astrophys. 511, A58 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Morris, M. & Jura, M. The nature of NML Cygnus. Astrophys. J. 267, 179–183 (1983)

    Article  CAS  ADS  Google Scholar 

  11. Yusef-Zadeh, F. & Morris, M. A windswept cometary tail on the Galactic center supergiant IRS 7. Astrophys. J. 371, L59–L62 (1991)

    Article  ADS  Google Scholar 

  12. Wright, N. J. et al. The ionized nebula surrounding the red supergiant W26 in Westerlund 1. Mon. Not. R. Astron. Soc. 437, L1–L5 (2014)

    Article  CAS  ADS  Google Scholar 

  13. Gvaramadze, V. V. et al. IRC -10414: a bow-shock-producing red supergiant star. Mon. Not. R. Astron. Soc. 437, 843–856 (2014)

    Article  ADS  Google Scholar 

  14. Meyer, D. M.-A. et al. On the stability of bow shocks generated by red supergiants: the case of IRC-10414. Mon. Not. R. Astron. Soc. 439, L41–L45 (2014)

    Article  CAS  ADS  Google Scholar 

  15. Ritzerveld, J. The diffuse nature of Strömgren spheres. Astron. Astrophys. 439, L23–L26 (2005)

    Article  CAS  ADS  Google Scholar 

  16. Smith, N., Hinkle, K. H. & Ryde, N. Red supergiants as potential type IIn supernova progenitors: spatially resolved 4.6 µm CO emission around VY CMa and Betelgeuse. Astron. J. 137, 3558–3573 (2009)

    Article  CAS  ADS  Google Scholar 

  17. Smith, N. et al. SN 2006gy: discovery of the most luminous supernova ever recorded, powered by the death of an extremely massive star like η Carinae. Astrophys. J. 666, 1116–1128 (2007)

    Article  CAS  ADS  Google Scholar 

  18. Smith, N. et al. Late-time observations of SN 2006gy: still going strong. Astrophys. J. 686, 485–491 (2008)

    Article  CAS  ADS  Google Scholar 

  19. Yoon, S.-C. & Cantiello, M. Evolution of massive stars with pulsation-driven superwinds during the red supergiant phase. Astrophys. J. 717, L62–L65 (2010)

    Article  ADS  Google Scholar 

  20. Fox, O. D. et al. Late-time circumstellar interaction in a Spitzer selected sample of type IIn supernovae. Astron. J. 146, 2 (2013)

    Article  ADS  CAS  Google Scholar 

  21. Moriya, T. J. et al. An analytic bolometric light curve model of interaction-powered supernovae and its application to type IIn supernovae. Mon. Not. R. Astron. Soc. 435, 1520–1535 (2013)

    Article  ADS  Google Scholar 

  22. van Marle, A. J., Langer, N., Achterberg, A. & García-Segura, G. Forming a constant density medium close to long gamma-ray bursts. Astron. Astrophys. 460, 105–116 (2006)

    Article  ADS  Google Scholar 

  23. Quataert, E. & Shiode, J. Wave-driven mass loss in the last year of stellar evolution: setting the stage for the most luminous core-collapse supernovae. Mon. Not. R. Astron. Soc. 423, L92–L96 (2012)

    Article  ADS  Google Scholar 

  24. Moriya, T. J. Mass loss of massive stars near the Eddington luminosity by core neutrino emission shortly before their explosion. Astron. Astrophys. 564, A83 (2014)

    Article  ADS  Google Scholar 

  25. Kotak, R. et al. Dust and the type II-plateau supernova 2004et. Astrophys. J. 704, 306–323 (2009)

    Article  CAS  ADS  Google Scholar 

  26. Ofek, E. O. et al. Precursors prior to type IIn supernova explosions are common: precursor rates, properties, and correlations. Astrophys. J. 789, 104 (2014)

    Article  ADS  CAS  Google Scholar 

  27. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009)

    Article  CAS  ADS  Google Scholar 

  28. Hummer, D. G. Total recombination and energy loss coefficients for hydrogenic ions at low density for 10 ≤ Te/Z2 ≤ 107 K. Mon. Not. R. Astron. Soc. 268, 109–112 (1994)

    Article  CAS  ADS  Google Scholar 

  29. Axford, W. I. Ionization fronts in interstellar gas: the structure of ionization fronts. R. Soc. Lond. Phil. Trans. A 253, 301–333 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  30. Mihalas, D. & Mihalas, B. W. Foundations of Radiation Hydrodynamics 295–299, 611–619 (Dover, 1999)

    MATH  Google Scholar 

  31. Parker, E. N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)

    Article  ADS  Google Scholar 

  32. Henney, W. J., Arthur, S. J. & García-Díaz, M. T. Photoevaporation flows in blister H II regions. I. Smooth ionization fronts and application to the Orion nebula. Astrophys. J. 627, 813–833 (2005)

    Article  CAS  ADS  Google Scholar 

  33. Mackey, J. & Lim, A. J. Dynamical models for the formation of elephant trunks in HII regions. Mon. Not. R. Astron. Soc. 403, 714–730 (2010)

    Article  CAS  ADS  Google Scholar 

  34. Mackey, J. Accuracy and efficiency of raytracing photoionisation algorithms. Astron. Astrophys. 539, A147 (2012)

    Article  ADS  Google Scholar 

  35. Martins, F., Schaerer, D. & Hillier, D. J. A new calibration of stellar parameters of galactic O stars. Astron. Astrophys. 436, 1049–1065 (2005)

    Article  CAS  ADS  Google Scholar 

  36. Mackey, J., Mohamed, S., Neilson, H. R., Langer, N. & Meyer, D. M.-A. Double bow shocks around young, runaway red supergiants: application to Betelgeuse. Astrophys. J. 751, L10 (2012)

    Article  ADS  Google Scholar 

  37. van Marle, A. J., Decin, L. & Meliani, Z. Can the magnetic field in the Orion arm inhibit the growth of instabilities in the bow shock of Betelgeuse? Astron. Astrophys. 561, A152 (2014)

    Article  ADS  Google Scholar 

  38. Williams, R. J. R. & Henney, W. J. Diffuse continuum transfer in HII regions. Mon. Not. R. Astron. Soc. 400, 263–272 (2009)

    Article  CAS  ADS  Google Scholar 

  39. Osterbrock, D. E. &. Ferland, G. J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei 2nd edn, 19–26 (University Science Books, 2005)

  40. Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics 8–14 (Wiley, 1979)

    Google Scholar 

  41. Brown, A. G. A., Hartmann, D. & Burton, W. B. The Orion OB1 association. II. The Orion-Eridanus Bubble. Astron. Astrophys. 300, 903–922 (1995)

    CAS  ADS  Google Scholar 

  42. Chevalier, R. A. & Fransson, C. Emission from circumstellar interaction in normal Type II supernovae. Astrophys. J. 420, 268–285 (1994)

    Article  CAS  ADS  Google Scholar 

  43. van Marle, A. J., Smith, N., Owocki, S. P. & van Veelen, B. Numerical models of collisions between core-collapse supernovae and circumstellar shells. Mon. Not. R. Astron. Soc. 407, 2305–2327 (2010)

    Article  ADS  Google Scholar 

  44. Matzner, C. D. & McKee, C. F. The expulsion of stellar envelopes in core-collapse supernovae. Astrophys. J. 510, 379–403 (1999)

    Article  CAS  ADS  Google Scholar 

  45. Moriya, T. J. et al. Light-curve modelling of superluminous supernova 2006gy: collision between supernova ejecta and a dense circumstellar medium. Mon. Not. R. Astron. Soc. 428, 1020–1035 (2013)

    Article  ADS  Google Scholar 

  46. Moriya, T. J. et al. Mass-loss histories of Type IIn supernova progenitors within decades before their explosion. Mon. Not. R. Astron. Soc. 439, 2917–2926 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.M. and S.M. are grateful to P. Kervella, T. Le Bertre and G. Perrin, the organisers of the Betelgeuse Workshop in Paris (November 2012), where the ideas for this work were first developed. J.M. acknowledges funding from a fellowship from the Alexander von Humboldt Foundation and from the Deutsche Forschungsgemeinschaft priority program 1573, ‘Physics of the Interstellar Medium’. S.M. acknowledges the receipt of research funding from the National Research Foundation (NRF) of South Africa. T.J.M. is supported by the Japan Society for the Promotion of Science Postdoctoral Fellowships for Research Abroad (26·51). H.R.N. acknowledges funding from a NSF grant (AST-0807664). R.K. acknowledges support from STFC (ST/L000709/1). The authors acknowledge the John von Neumann Institute for Computing for a grant of computing time on the JUROPA supercomputer at Jülich Supercomputing Centre.

Author information

Authors and Affiliations

Authors

Contributions

J.M. and S.M. had the original idea that Betelgeuse’s static shell could be confined by external radiation. J.M. derived the analytic equations for the shell, and ran and analysed the spherically symmetric computations. V.V.G., D.M.-A.M., N.L. and J.M. discussed the results in the context of recently discovered photoionized winds, which motivated many of the specific choices of parameters used. J.M., S.M., V.V.G., D.M.-A.M., H.R.N. and N.L. interpreted Betelgeuse’s shell in the context of our results. N.L. proposed that the shells could be relevant for interacting supernovae, and developed this idea with J.M., R.K. and T.J.M. Figures were prepared by J.M., S.M., T.J.M. and R.K. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Jonathan Mackey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Dependence of the photoionization-confined shell radius on the properties of the stellar wind and external ionizing radiation.

The panels plot RIF as a function of mass-loss rate, (a), external ionizing photon flux, Fγ (b), and wind velocity, vn (c). Data points are from spherically symmetric radiation hydrodynamics simulations and black lines are from equation (1). In a, the fixed parameters are vn = 15 km s−1 and Fγ = 1010 cm−2 s−1; in b they are vn = 15 km s−1 and either (blue points) or (red points); and c they are and Fγ = 1010 cm−2 s−1.

Extended Data Figure 2 Dependence of the photoionization-confined shell mass on the properties of the stellar wind and external ionizing radiation.

The panels plot Mshell as a function of (a), Fγ (b) and vn (c). Data points are steady-state masses from spherically symmetric radiation hydrodynamics simulations and black lines are from equation (3). Again, in a the fixed parameters are vn = 15 km s−1 and Fγ = 1010 cm−2 s−1; in b they are vn = 15 km s−1 and either (blue points) or (red points); and in c they are and Fγ = 1010 cm−2 s−1.

Extended Data Figure 3 Growth of shell mass, Mshell, as a function of time for two different photoionization-confined shell simulations.

The shell accumulates mass linearly with time until it begins to saturate at about 1/3 to 1/2 of its final mass. The solid line shows in a and in b. a, Photoionization-confined shell appropriate for Betelgeuse, with , vn = 14 km s−1 and Fγ = 2 × 107 cm−2 s−1. b, More extreme model with , vn = 15 km s−1 and Fγ = 1013 cm−2 s−1.

Extended Data Figure 4 Structure of the circumstellar medium around Betelgeuse from a spherically symmetric radiation hydrodynamics simulation.

Hydrogen number density, gas velocity, temperature and wind fraction are plotted as functions of distance from the star after 0.01 Myr of evolution. The wind fraction equals 1 in the wind and equals 0 in the ISM. The photoionization-confined shell is still very thin and has low mass at this early time, and the fully ionized ISM interface at r = 0.2 pc shows that the expanding wind drives a forward shock and a reverse shock. Supplementary Information contains a video showing an animation of the time evolution.

Supplementary information

Evolution of the circumstellar structures around Betelgeuse from a spherically symmetric radiation-hydrodynamics simulation

Hydrogen number density, gas velocity, temperature, and wind fraction are plotted as a function of distance from the star. The wind fraction is = 1 in the wind and = 0 in the ISM. The photoionization-confined shell reaches its final position rapidly and accumulates mass, whereas the wind pushes the ISM to ever-larger radii over time. (MP4 303 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackey, J., Mohamed, S., Gvaramadze, V. et al. Interacting supernovae from photoionization-confined shells around red supergiant stars. Nature 512, 282–285 (2014). https://doi.org/10.1038/nature13522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13522

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing