Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable spin–spin interactions and entanglement of ions in separate potential wells

Abstract

Quantum simulation1,2—the use of one quantum system to simulate a less controllable one—may provide an understanding of the many quantum systems which cannot be modelled using classical computers. Considerable progress in control and manipulation has been achieved for various quantum systems3,4,5, but one of the remaining challenges is the implementation of scalable devices. In this regard, individual ions trapped in separate tunable potential wells are promising6,7,8. Here we implement the basic features of this approach and demonstrate deterministic tuning of the Coulomb interaction between two ions, independently controlling their local wells. The scheme is suitable for emulating a range of spin–spin interactions, but to characterize the performance of our set-up we select one that entangles the internal states of the two ions with a fidelity of 0.82(1) (the digit in parentheses shows the standard error of the mean). Extension of this building block to a two-dimensional network, which is possible using ion-trap microfabrication processes9, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. To perform useful quantum simulations, including those of condensed-matter phenomena such as the fractional quantum Hall effect, an array of tens of ions might be sufficient4,10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microfabricated surface-electrode trap.
Figure 2: Motional spectroscopy of two coupled ions.
Figure 3: Characterizing the spin–spin coupling interaction between ions in separate trapping zones.

Similar content being viewed by others

References

  1. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  CAS  Google Scholar 

  4. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014)

    Article  ADS  Google Scholar 

  5. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012)

    Article  ADS  CAS  Google Scholar 

  6. Chiaverini, J. & Lybarger, W. E. Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays. Phys. Rev. A 77, 022324 (2008)

    Article  ADS  Google Scholar 

  7. Schmied, R., Wesenberg, J. H. & Leibfried, D. Optimal surface-electrode trap lattices for quantum simulation with trapped ions. Phys. Rev. Lett. 102, 233002 (2009)

    Article  ADS  Google Scholar 

  8. Shi, T. & Cirac, J. I. Topological phenomena in trapped-ion systems. Phys. Rev. A 87, 013606 (2013)

    Article  ADS  Google Scholar 

  9. Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Friedenauer, A., Schmitz, H., Glueckert, J. T., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Nielsen, A. E. B., Sierra, G. & Cirac, J. I. Local models of fractional quantum Hall states in lattices and physical implementation. Nature Commun. 4, 2864 (2013)

    Article  ADS  Google Scholar 

  12. Schmied, R., Wesenberg, J. H. & Leibfried, D. Quantum simulation of the hexagonal Kitaev model with trapped ions. New J. Phys. 13, 115011 (2011)

    Article  ADS  Google Scholar 

  13. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998)

    Article  CAS  Google Scholar 

  14. Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Brown, K. R. et al. Coupled quantized mechanical oscillators. Nature 471, 196–199 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Harlander, M., Lechner, R., Brownnutt, M., Blatt, R. & Hänsel, W. Trapped-ion antennae for the transmission of quantum information. Nature 471, 200–203 (2011)

    Article  ADS  CAS  Google Scholar 

  18. Heinzen, D. J. & Wineland, D. J. Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. Phys. Rev. A 42, 2977–2994 (1990)

    Article  ADS  CAS  Google Scholar 

  19. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Daniilidis, N., Lee, T., Clark, R., Nararyanan, S. & Häffner, H. Wiring up trapped ions to study aspects of quantum information. J. Phys. B 42, 154012 (2009)

    Article  ADS  Google Scholar 

  21. Ciaramicoli, G., Marzoli, I. & Tombesi, P. Scalable quantum processor with trapped electrons. Phys. Rev. Lett. 91, 017901 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Kim, K. et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012)

    Article  ADS  CAS  Google Scholar 

  24. Bermudez, A., Schmidt, P. O., Plenio, M. B. & Retzker, A. Robust trapped-ion quantum logic gates by continuous dynamical decoupling. Phys. Rev. A 85, 040302(R) (2012)

    Article  ADS  Google Scholar 

  25. Tan, T. R. et al. Demonstration of a dressed-state phase gate for trapped ions. Phys. Rev. Lett. 110, 263002 (2013)

    Article  ADS  CAS  Google Scholar 

  26. Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Chou, C. W., Hume, D. B., Thorpe, M. J., Wineland, D. J. & Rosenband, T. Quantum coherence between two atoms beyond Q = 1015. Phys. Rev. Lett. 106, 160801 (2011)

    Article  ADS  CAS  Google Scholar 

  28. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Hite, D. A. et al. 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109, 103001 (2012)

    Article  ADS  CAS  Google Scholar 

  30. Hauke, P. et al. Can one trust quantum simulators? Rep. Prog. Phys. 75, 082401 (2012)

    Article  ADS  Google Scholar 

  31. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003)

    Article  ADS  CAS  Google Scholar 

  32. Jünemann, J., Cadarso, A., Pérez-García, D., Bermudez, A. & García-Ripoll, J. J. Lieb-Robinson bounds for spin-boson lattice models and trapped ions. Phys. Rev. Lett. 111, 230404 (2013)

    Article  ADS  Google Scholar 

  33. Hayes, D. et al. Coherent error suppression in multiqubit entangling gates. Phys. Rev. Lett. 109, 020503 (2012)

    Article  ADS  CAS  Google Scholar 

  34. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman & Hall, 1993)

    Book  Google Scholar 

  35. Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nature Phys. 8, 264–266 (2012)

    Article  ADS  CAS  Google Scholar 

  36. Knill, E. Quantum computing. Nature 463, 441–443 (2010)

    Article  ADS  CAS  Google Scholar 

  37. Leibfried, D. Could a boom in technologies trap Feynman’s simulator? Nature 463, 608 (2010)

    Article  ADS  CAS  Google Scholar 

  38. Li, J. et al. Motional averaging in a superconducting qubit. Nature Commun. 4, 1420 (2013)

    Article  ADS  Google Scholar 

  39. Tseng, C. H. et al. Quantum simulation with natural decoherence. Phys. Rev. A 62, 032309 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. McCormick, A. Keith and D. Allcock for comments on the manuscript. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA or the ODNI. This work, a submission of NIST, is not subject to US copyright.

Author information

Authors and Affiliations

Authors

Contributions

A.C.W. and D.L. designed the experiment, developed components of the experimental apparatus, collected data, analysed results and wrote the manuscript. D.L. developed the theory. Y.C. fabricated the ion-trap chip. K.R.B. built components of the apparatus, most notably the cryostat, and participated in the early design phase of the experiment. E.K. assisted with data analysis. D.J.W. participated in the design and analysis of the experiment. All authors discussed the results and the text of the manuscript.

Corresponding author

Correspondence to A. C. Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, A., Colombe, Y., Brown, K. et al. Tunable spin–spin interactions and entanglement of ions in separate potential wells. Nature 512, 57–60 (2014). https://doi.org/10.1038/nature13565

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13565

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing