Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

South Greenland ice-sheet collapse during Marine Isotope Stage 11

Abstract

Varying levels of boreal summer insolation and associated Earth system feedbacks led to differing climate and ice-sheet states during late-Quaternary interglaciations. In particular, Marine Isotope Stage (MIS) 11 was an exceptionally long interglaciation and potentially had a global mean sea level 6 to 13 metres above the present level around 410,000 to 400,000 years ago1,2, implying substantial mass loss from the Greenland ice sheet (GIS). There are, however, no model simulations and only limited proxy data3,4 to constrain the magnitude of the GIS response to climate change during this ‘super interglacial’5, thus confounding efforts to assess climate/ice-sheet threshold behaviour6,7 and associated sea-level rise1,2. Here we show that the south GIS was drastically smaller during MIS 11 than it is now, with only a small residual ice dome over southernmost Greenland. We use the strontium–neodymium–lead isotopic composition of proglacial sediment discharged from south Greenland to constrain the provenance of terrigenous silt deposited on the Eirik Drift, a sedimentary deposit off the south Greenland margin. We identify a major reduction in sediment input derived from south Greenland’s Precambrian bedrock terranes, probably reflecting the cessation of subglacial erosion and sediment transport8 as a result of near-complete deglaciation of south Greenland. Comparison with ice-sheet configurations from numerical models7,9,10,11,12 suggests that the GIS lost about 4.5 to 6 metres of sea-level-equivalent volume during MIS 11. This is evidence for late-Quaternary GIS collapse after it crossed a climate/ice-sheet stability threshold that may have been no more than several degrees above pre-industrial temperatures6,7.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of Greenland and other features mentioned in the text.
Figure 2: MD99-2227 records on depth scale.
Figure 3: Terrigenous silt provenance estimates for MD99-2227 compared with other Eirik Drift indicators of GIS extent during the Holocene, LIG and MIS 11.

Similar content being viewed by others

References

  1. Raymo, M. E. & Mitrovica, J. X. Collapse of polar ice sheets during the stage 11 interglacial. Nature 483, 453–456 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Rohling, E. J. et al. Comparison between Holocene and Marine Isotope Stage-11 sea-level histories. Earth Planet. Sci. Lett. 291, 97–105 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Vernal, A. & Hillaire-Marcel, C. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320, 1622–1625 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Melles, M. et al. 2.8 Million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337, 315–320 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Ridley, J., Gregory, J. M., Huybrechts, P. & Lowe, J. Thresholds for irreversible decline of the Greenland ice sheet. Clim. Dyn. 35, 1049–1057 (2010)

    Article  Google Scholar 

  7. Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nature Clim. Change 2, 429–432 (2012)

    Article  ADS  Google Scholar 

  8. Cowton, T., Nienow, P., Bartholomew, I., Sole, A. & Mair, D. Rapid erosion beneath the Greenland ice sheet. Geology 40, 343–346 (2012)

    Article  ADS  Google Scholar 

  9. Cuffey, K. M. & Marshall, S. J. Substantial contribution to sea-level rise during the last interglacial from the Greenland Ice Sheet. Nature 404, 591–594 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Huybrechts, P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev. 21, 203–231 (2002)

    Article  ADS  Google Scholar 

  11. Tarasov, L. & Peltier, W. R. Greenland glacial history, borehole constraints, and Eemian extent. J. Geophys. Res. 108, 2143 (2003)

    Article  ADS  Google Scholar 

  12. Lhomme, N., Clarke, G. K. C. & Marshall, S. J. Tracer transport in the Greenland Ice Sheet - constraints on ice cores and glacial history. Quat. Sci. Rev. 24, 173–194 (2005)

    Article  ADS  Google Scholar 

  13. Fretwell, P. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013)

    Article  ADS  Google Scholar 

  14. Bamber, J. L. et al. A new bed elevation dataset for Greenland. Cryosphere 7, 499–510 (2013)

    Article  ADS  Google Scholar 

  15. Fagel, N. & Hillaire-Marcel, C. Glacial/interglacial instabilities of the Western Boundary Under Current during the last 365 kyr from Sm/Nd ratios of the sedimentary clay-size fractions at ODP site 646 (Labrador Sea). Mar. Geol. 232, 87–99 (2006)

    Article  ADS  Google Scholar 

  16. Colville, E. J. et al. Sr-Nd-Pb isotope evidence for ice-sheet presence on southern Greenland during the last interglacial. Science 333, 620–623 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Stoner, J. S., Channell, J. E. T. & Hillaire-Marcel, C. Magnetic properties of deep-sea sediments off southwest Greenland: evidence for major differences between the last two deglaciations. Geology 23, 241–244 (1995)

    Article  ADS  Google Scholar 

  18. Carlson, A. E., Stoner, J. S., Donnelly, J. P. & Hillaire-Marcel, C. Response of the southern Greenland Ice Sheet during the last two deglaciations. Geology 36, 359–362 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Evans, H. F. et al. Paleointensity-assisted chronostratigraphy of detrital layers on the Eirik Drift (North Atlantic) since marine isotope stage 11. Geochem. Geophys. Geosyst. 8, Q11007 (2007)

    ADS  Google Scholar 

  20. Hillaire-Marcel, C., de Vernal, A. & McKay, J. Foraminifer isotope study of the Pleistocene Labrador Sea, northwest North Atlantic (IODP Sites 1302/03 and 1305), with emphasis on paleoceanographical differences between its “inner” and “outer” basins. Mar. Geol. 279, 188–198 (2011)

    Article  ADS  CAS  Google Scholar 

  21. Hillaire-Marcel, C., de Vernal, A., Bilodeau, G. & Wu, G. Isotope stratigraphy, sedimentation rates, deep circulation, and carbonate events in the Labrador Sea during the last 200 ka. Can. J. Earth Sci. 31, 63–89 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Hasholt, B. in Proc. Int. Symp. Erosion Sediment Yield: Global Regional Perspectives (eds Walling, D. E. & Webb, B. W. ) 105–114 (IAHS-AISH Publication, 1996)

    Google Scholar 

  23. Church, M. & Ryder, J. M. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol. Soc. Am. Bull. 83, 3059–3071 (1972)

    Article  ADS  Google Scholar 

  24. Ohmura, A. & Reeh, N. New precipitation and accumulation maps for Greenland. J. Glaciol. 37, 140–148 (1991)

    Article  ADS  Google Scholar 

  25. Bierman, P. R. et al. Preservation of a preglacial landscape under the center of the Greenland ice sheet. Science 344, 402–405 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Helmke, J. P. & Bauch, H. A. Comparison of conditions between the polar and subpolar North Atlantic region over the last five climate cycles. Paleoceanography 18, 1036 (2003)

    Article  ADS  Google Scholar 

  27. Bauch, H. A. Interglacial climates and the Atlantic meridional overturning circulation: is there an Arctic controversy? Quat. Sci. Rev. 63, 1–22 (2013)

    Article  ADS  Google Scholar 

  28. Vaks, A. et al. Speleothems reveal 500,000-year history of Siberian permafrost. Science 340, 183–186 (2013)

    ADS  CAS  PubMed  Google Scholar 

  29. Froese, D. G., Westgate, J. A., Reyes, A. V., Enkin, R. J. & Preece, S. J. Ancient permafrost and a future, warmer Arctic. Science 321, 1648 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Cronin, T. M. et al. A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes. Quat. Sci. Rev. 79, 157–167 (2013)

    Article  ADS  Google Scholar 

  31. Hillaire-Marcel, C. et al. IMAGES 5 on Board the Marion Dufresne, 2nd Leg 30 June - 24 July 1999 (Open File 3782, Geol. Surv. Canada, 1999)

  32. Crocket, K. C., Foster, G. L., Vance, D., Richards, D. A. & Tranter, M. A Pb isotope tracer of ocean-ice sheet interaction: the record from the NE Atlantic during the Last Glacial/Interglacial cycle. Quat. Sci. Rev. 82, 133–144 (2013)

    Article  ADS  Google Scholar 

  33. Michalopoulos, M. & Aller, R. C. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim. Cosmochim. Acta 68, 1061–1085 (2004)

    Article  ADS  CAS  Google Scholar 

  34. Channell, J. E. T., Xuan, C. & Hodell, D. A. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet. Sci. Lett. 283, 14–23 (2009)

    Article  ADS  CAS  Google Scholar 

  35. Winsor, K., Carlson, A. E., Klinkhammer, G. P., Stoner, J. S. & Hatfield, R. G. Evolution of the northeast Labrador Sea during the last interglaciation. Geochem. Geophys. Geosyst. 13, Q11006 (2012)

    Article  ADS  Google Scholar 

  36. Lisiecki, L. E., Raymo, M. E. & A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005)

    ADS  Google Scholar 

  37. Aksu, A. E., de Vernal, A. & Mudie, P. J. in Proc. Ocean Drilling Program, Scientific Results Vol. 105 (eds. Srivastava, S. P. et al.) 617–652 (Ocean Drilling Program, 1989)

    Google Scholar 

  38. Jacobsen, S. B. & Wasserburg, G. J. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980)

    Article  ADS  CAS  Google Scholar 

  39. Escher, A. & Watt, W. S. in Geology of Greenland (eds Escher, A. & Watt, W. S. ) 12–15 (Geol. Soc. Greenland, 1976)

    Google Scholar 

  40. Birkelund, T., Perch-Nielsen, K., Bridgwater, D. & Higgins, A. K. in The Ocean Basins and Margins (eds Nairn, A. E. M. & Stehli, F. G. ) 125–159 (Plenum, 1974)

    Book  Google Scholar 

  41. Escher, J. C., Ryan, M. J. & Marker, M. in Precambrian Geology of the Disko Bugt Region, West Greenland (ed. Kalsbeek, F. ) 171–179 (Geol. Greenland Surv. Bull. 181, 1999)

    Google Scholar 

  42. Dawes, P. R. The bedrock geology under the Inland Ice: the next major challenge for Greenland mapping. Geol. Survey Denmark Greenland Bull. 17, 57–60 (2009)

    Google Scholar 

  43. Fagel, N. et al. Nd and Pb isotope signatures of the clay-size fraction of Labrador Sea sediments during the Holocene: implications for the inception of the modern deep circulation pattern. Paleoceanography 19, PA3002 (2004)

    Article  ADS  Google Scholar 

  44. Patchett, P. J. & Bridgwater, D. Origin of continental crust of 1.9-1.7 Ga age defined by Nd isotopes in the Ketilidian terrain of South Greenland. Contrib. Mineral. Petrol. 87, 311–318 (1984)

    Article  ADS  CAS  Google Scholar 

  45. Van Breemen, O., Aftalion, M. & Allaart, J. H. Isotopic and geochronological studies on granites from the Ketilidian mobile belt of south Greenland. Geol. Soc. Am. Bull. 85, 403–412 (1974)

    Article  ADS  CAS  Google Scholar 

  46. Kalsbeek, F. & Taylor, P. N. Isotopic and chemical variation in granites across a Proterozoic continental margin—the Ketilidian mobile belt of South Greenland. Earth Planet. Sci. Lett. 73, 65–80 (1985)

    Article  ADS  CAS  Google Scholar 

  47. Stevenson, R., Upton, B. G. J. & Steenfelt, A. Crust-mantle interaction in the evolution of the Ilimaussaq Complex, South Greenland: Nd isotopic studies. Lithos 40, 189–202 (1997)

    Article  ADS  CAS  Google Scholar 

  48. Friend, C. R. L. & Nutman, A. P. New pieces to the Archaean terrane jigsaw puzzle in the Nuuk region, southern West Greenland: steps in transforming a simple insight into a complex regional tectonothermal model. J. Geol. Soc. Lond. 162, 147–162 (2005)

    Article  Google Scholar 

  49. Henriksen, N., Higgins, A. K., Kalsbeek, F. & Pulvercraft, T. C. R. Greenland from Archaean to Quaternary. Descriptive Text to the 1995 Geological Map of Greenland, 1:2 500 000 2nd edn (Geol. Surv. Denmark Greenland Bull. 18, 2009)

    Google Scholar 

  50. Goldstein, S. J. & Jacobsen, S. B. Nd and Sr isotopic systematics of river water suspended material - implications for crustal evolution. Earth Planet. Sci. Lett. 87, 249–265 (1988)

    Article  ADS  CAS  Google Scholar 

  51. Whitehouse, M. J., Kalsbeek, F. & Nutman, A. P. Crustal growth and crustal recycling in the Nagssugtoqidian orogen of West Greenland: constraints from radiogenic isotope systematics and U–Pb zircon geochronology. Precambr. Res. 91, 365–381 (1998)

    Article  ADS  CAS  Google Scholar 

  52. Holm, P. M. in Early Tertiary Volcanism and the Opening of the Northeast Atlantic (eds Morton, A. C. & Parson, L. M. ) 181–196 (Geol. Soc. Spec. Publ. 39, 1988)

    Google Scholar 

  53. Bernstein, S. et al. Post-breakup basaltic magmatism along the East Greenland Tertiary rifted margin. Earth Planet. Sci. Lett. 160, 845–862 (1998)

    Article  ADS  CAS  Google Scholar 

  54. Hansen, H. & Nielsen, T. F. D. Crustal contamination in Palaeogene East Greenland flood basalts: plumbing system evolution during continental rifting. Chem. Geol. 157, 89–118 (1999)

    Article  ADS  CAS  Google Scholar 

  55. Barker, A. K., Baker, J. A. & Peate, D. W. Interaction of the rifting East Greenland margin with a zoned ancestral Iceland plume. Geology 34, 481–484 (2006)

    Article  ADS  Google Scholar 

  56. Saunders, A. D., Kempton, P. D., Fitton, J. G. & Larsen, L. M. in Proc. Ocean Drilling Program, Scientific Results Vol. 163 (eds Larsen, H.-C., Duncan, R. A., Allan, J. F. & Brooks, K. ) 77–93 (Ocean Drilling Program, 1999)

    Google Scholar 

  57. Andreasen, R., Peate, D. W. & Brooks, C. K. Magma plumbing systems in large igneous provinces; inferences from cyclical variations in Palaeogene east Greenland basalts. Contrib. Mineral. Petrol. 147, 438–452 (2004)

    Article  ADS  CAS  Google Scholar 

  58. Farmer, G. L., Barber, D. & Andrews, J. Provenance of Late Quaternary ice-proximal sediments in the North Atlantic: Nd, Sr and Pb isotopic evidence. Earth Planet. Sci. Lett. 209, 227–243 (2003)

    Article  ADS  CAS  Google Scholar 

  59. Verplanck, E. P., Farmer, G. L., Andrews, J., Dunhill, G. & Millo, C. Provenance of Quaternary glacial and glacimarine sediments along the southeast Greenland margin. Earth Planet. Sci. Lett. 286, 52–62 (2009)

    Article  ADS  CAS  Google Scholar 

  60. Innocent, C., Fagel, N. & Hillaire-Marcel, C. Sm-Nd isotope systematics in deep-sea sediments: clay-size versus coarser fractions. Mar. Geol. 168, 79–87 (2000)

    Article  ADS  CAS  Google Scholar 

  61. Higgins A. K., Gilotto J. A., Smith M. P., eds. The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia (Geol. Soc. Am. Mem. 202, Geological Society of America, 2008)

  62. Prins, M. A. et al. Ocean circulation and iceberg discharge in the glacial North Atlantic: inferences from unmixing of sediment size distributions. Geology 30, 555–558 (2002)

    Article  ADS  CAS  Google Scholar 

  63. Hunter, S. E. et al. Deep western boundary current dynamics and associated sedimentation on the Eirik Drift, Southern Greenland Margin. Deep-Sea Res. 54, 2036–2066 (2007)

    Article  Google Scholar 

  64. Innocent, C., Fagel, N., Stevenson, R. K. & Hillaire-Marcel, C. Sm-Nd signature of modern and late Quaternary sediments from the northwest North Atlantic: implications for deep current changes since the Last Glacial Maximum. Earth Planet. Sci. Lett. 146, 607–625 (1997)

    Article  ADS  Google Scholar 

  65. Stanford, J. D., Rohling, E. J., Bacon, S. & Holliday, N. P. A review of the deep and surface currents around Eirik Drift, south of Greenland: comparison of the past with the present. Global Planet. Change 79, 244–254 (2011)

    Article  ADS  Google Scholar 

  66. Mazaud, A., Channell, J. E. T. & Stoner, J. S. Relative paleointensity and environmental magnetism since 1.2 Ma at IODP site U1305 (Eirik Drift, NW Atlantic). Earth Planet. Sci. Lett. 357-358, 137–144 (2012)

    Article  ADS  CAS  Google Scholar 

  67. Channell, J. E. T. et al. North Atlantic Climate (IODP Sci. Prosp. 303/306, Integrated Ocean Drilling Program, 2004)

  68. Hatfield, R. G., Stoner, J. S., Carlson, A. E., Reyes, A. V. & Housen, B. A. Source as a controlling factor on the quality and interpretation of sediment magnetic records from the northern North Atlantic. Earth Planet. Sci. Lett. 368, 69–77 (2013)

    Article  ADS  CAS  Google Scholar 

  69. Faure, G. Principles of Isotope Geology 141–151 (Wiley, 1986)

    Google Scholar 

  70. Albarède, F. Introduction to Geochemical Modeling 1–31 (Cambridge Univ. Press, 1995)

    Book  Google Scholar 

  71. Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust - a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995)

    Article  ADS  Google Scholar 

  72. R Core Team. The R Project for Statistical Computinghttp://www.R-project.org (R Foundation for Statistical Computing, 2013)

  73. Fyke, J. G. et al. A new coupled ice sheet/climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions. Geosci. Model Dev. 4, 117–136 (2011)

    Article  ADS  Google Scholar 

  74. Stone, E. J., Lunt, D. J., Annan, J. D. & Hargreaves, J. C. Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Clim. Past 9, 621–639 (2013)

    Article  Google Scholar 

  75. Quiquet, A., Ritz, C., Punge, H. J. & Salas y Mélia, D. Greenland ice sheet contribution to sea level rise during the last interglacial period: a modelling study driven and constrained by ice core data. Clim. Past 9, 353–366 (2013)

    Article  Google Scholar 

  76. Born, A. & Nisancioglu, K. H. Melting of Northern Greenland during the last interglaciation. Cryosphere 6, 1239–1250 (2012)

    Article  ADS  Google Scholar 

  77. Helsen, M. M., van de Berg, W. J., van de Wal, R. S. W., van den Broeke, M. R. & Oerlemans, J. Coupled regional climate–ice-sheet simulation shows limited Greenland ice loss during the Eemian. Clim. Past 9, 1773–1788 (2013)

    Article  Google Scholar 

  78. Otto-Bliesner, B. et al. Simulating Arctic climate warmth and icefield retreat in the last inter- glaciation. Science 311, 1751–1753 (2006

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. de Vernal for access to pollen records and archived sediment; C. Hillaire-Marcel for discussions of MD99-2227 stratigraphy and geochemistry; J. Briner, B. Hudson, S. Kelley and N. Larsen for providing samples; and E. Colville, P. Holm and S. Strano for assistance in the field. This research was supported by US NSF awards ANS-0902571 (A.E.C., B.L.B.) and -0902751 (J.S.S.), and a Canadian NSERC fellowship (A.V.R.).

Author information

Authors and Affiliations

Authors

Contributions

A.E.C., B.L.B. and J.S.S. had the idea for the study; A.V.R., A.E.C. and R.G.H. designed and conducted field research in Greenland; B.W. conducted grain-size analysis; A.V.R. and B.L.B. conducted isotopic analyses; K.W. sampled and identified foraminifera; A.V.R. and D.J.U. implemented the isotope mixing model; A.E.C., R.G.H., J.S.S. and K.W. developed the age model for MD99-2227; A.V.R., A.E.C. and B.L.B. synthesized the results; and A.V.R. and A.E.C. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Alberto V. Reyes or Anders E. Carlson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Greenland stream sediment and MD99-2227 data have been deposited with the NOAA National Climatic Data Center (http://hurricane.ncdc.noaa.gov/pls/paleox/f?p=519:1:0::::P1_STUDY_ID:16436).

Extended data figures and tables

Extended Data Figure 1 Whole-rock and stream sediment silt Sr–Nd–Pb isotope composition for south Greenland bedrock terranes.

a, b, 207Pb/204Pb (a) and 208Pb/204Pb (b) versus 206Pb/204Pb. c, d, 87Sr/86Sr versus 87Rb/86Sr for the range of whole-rock (WR) and stream sediment (SED) compositions (c) and restricted to the range of stream sediment compositions (d). e, 143Nd/144Nd versus 147Sm/144Nd. f, εNd versus 87Sr/86Sr. g, h, 87Sr/86Sr versus 206Pb/204Pb (g) and 208Pb/204Pb (h). Whole-rock data for KMB, AB and NMB compiled in ref. 16; Palaeogene volcanic whole-rock and glacigenic shelf sediment data are presented in Supplementary Table 3. Mean values (large symbols) are concentration-weighted means for Rb–Sr and Sm–Nd isotopic compositions, whereas Pb isotope ratios are arithmetic means.

Extended Data Figure 2 Summary of mixing model results for each south Greenland terrane.

MD99-2227 inferred silt provenance expressed as median flux of CaCO3-free silt (a) and median percentage of total CaCO3-free silt (b). Values for the Holocene and LIG are recast from CaCO3-free silt Sr–Nd–Pb isotope ratios in ref. 16. Thick black and thin grey vertical lines mark the 16.5–83.5% and 2.5–97.5% quantile ranges, respectively, of valid mixing solutions from all 10,000 model runs. Uncertainty estimates are conservative, because the Monte Carlo procedure for random endmember determination can result in unrealistic combinations of source-terrane isotope composition and elemental concentration. Note different y-axis scale for Palaeogene volcanic data.

Extended Data Figure 3 Selected sediment sampling sites in west Greenland.

Site coordinates are provided in Supplementary Table 2: a, Qa11-04; b, Qa11-01; Qa11-03; c, stream sediment sampling sites near Narsaq; d, Kn11-03; e, proglacial lake, iceberg debris and proglacial outwash sampling sites near Nuuk; f, Kp11-01.

Extended Data Figure 4 Age models for MD99-2227 and ODP Site 646.

a, Age–depth model for MD99-2227. Circles mark tie points based on 14C dates18, δ18O (ref. 35) and RPI. b, MD99-2227 RPI and the PISO-1500 RPI stack34, plotted on their individual age models. Crosses mark RPI tie points. c, MD99-2227 and ODP Site 646 magnetic susceptibilities, plotted on the MD99-2227 age model. For comparison purposes, the ODP Site 646 age–depth model was fitted to MD99-2227 using the magnetic susceptibility tie points indicated by crosses.

Extended Data Figure 5 Comparison of MD99-2227 sedimentation rates and provenance estimates from south Greenland terranes.

a, Neogloboquadrina pachyderma (s) δ18O from ODP Site 646 (ref. 4; green) and MD99-2227 (Methods; blue). Yellow bar marks the interval of MD99-2227 that is affected by core stretching. b, MD99-2227 inferred silt provenance estimated using four-component endmember modelling, expressed as flux of CaCO3-free silt. Values for the Holocene and LIG are recast from CaCO3-free silt Sr–Nd–Pb isotope ratios in ref. 16. c, MD99-2227 sedimentation rates (left axis, thick blue line) and dry bulk density (right axis, thin red line). Note different y-axis scale for the Holocene/TI panels at far left for b and c.

Extended Data Figure 6 Sediment sources and sedimentation processes.

Conceptual model of terrigenous silt sources and transport processes for a given bedrock terrane during full glaciation (a), glacial termination and deglaciation (b), and near-complete deglaciation (c). SSC, sand/silt/clay.

Extended Data Figure 7 Isotope mixing model comparison.

Comparison of mixing model output for MIS 1, Termination I, MIS 5e and Termination II samples presented in ref. 16 with model output using the Monte Carlo approach reported here. a, Number of valid mixing equation solutions. b, c, Mean CaCO3-free silt fractions for the KMB, AB and NMB (b), and the Palaeogene volcanics (c).

Supplementary information

Supplementary Tables

This file contains Supplementary Tables 1-7: Table 1 - Grain-size and isotopic data for the MIS 11 interval of MD99-2227; Table 2 - Isotopic data for Greenland stream sediment silts; Table 3 - Isotopic data used to determine geochemical endmember values for Paleogene volcanics; Table 4 - Mixing model estimates of MIS11 silt provenance from south Greenland Precambrian and Paleogene volcanic terranes, as fraction CaCO3-free silt; Table 5 - Revised mixing model estimates of Holocene and TI silt provenance from south Greenland Precambrian and Paleogene volcanic terranes, as fraction CaCO3-free silt; Table 6 - Revised mixing model estimates of MIS 5 and TII silt provenance from south Greenland Precambrian and Paleogene volcanic terranes, as fraction CaCO3-free silt; Table 7 - Corrected silt wt% data and terrane provenance estimates for the Holocene and LIG/TII intervals of MD99-2227. (XLS 179 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, A., Carlson, A., Beard, B. et al. South Greenland ice-sheet collapse during Marine Isotope Stage 11. Nature 510, 525–528 (2014). https://doi.org/10.1038/nature13456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13456

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing