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            Abstract
Cells maintain healthy mitochondria by degrading damaged mitochondria through mitophagy; defective mitophagy is linked to Parkinsonâ€™s disease. Here we report that USP30, a deubiquitinase localized to mitochondria, antagonizes mitophagy driven by the ubiquitin ligase parkin (also known as PARK2) and protein kinase PINK1, which are encoded by two genes associated with Parkinsonâ€™s disease. Parkin ubiquitinates and tags damaged mitochondria for clearance. Overexpression of USP30 removes ubiquitin attached by parkin onto damaged mitochondria and blocks parkinâ€™s ability to drive mitophagy, whereas reducing USP30 activity enhances mitochondrial degradation in neurons. Global ubiquitination site profiling identified multiple mitochondrial substrates oppositely regulated by parkin and USP30. Knockdown of USP30 rescues the defective mitophagy caused by pathogenic mutations in parkin and improves mitochondrial integrity in parkin- or PINK1-deficient flies. Knockdown of USP30 in dopaminergic neurons protects flies against paraquat toxicity in vivo, ameliorating defects in dopamine levels, motor function and organismal survival. Thus USP30 inhibition is potentially beneficial for Parkinsonâ€™s disease by promoting mitochondrial clearance and quality control.
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                    Figure 1: USP30 antagonizes parkin-mediated mitophagy.


Figure 2: USP30 antagonizes mitophagy in neurons.


Figure 3: USP30 and parkin act antagonistically on common substrates.


Figure 4: USP30 knockdown rescues mitophagy defects associated with mutant parkin.


Figure 5: USP30 knockdown provides protection in vivo.
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Extended data figures and tables

Extended Data Figure 1 USP30 is a mitochondrial protein.
a, Immunostaining of transfected USP30â€“Flag (red) and mitochondria-targeted GFP (green) in cultured rat hippocampal neurons. Merge is shown in colour; individual channels in greyscale. Scale bar, 5â€‰Âµm. b, Immunostaining of SH-SY5Y cells transfected with control or USP30 siRNA. 3â€‰days after transfection, cells were fixed and immunostained for endogenous USP30 and HSP60. USP30 siRNA primarily decreases mitochondrial USP30 antibody staining (scale bar, 5â€‰Âµm). Higher magnification images of the boxed regions are shown in the right panels (scale bar, 2â€‰Âµm). c, Immunoblots of cytoplasm- and mitochondria-enriched fractions from rat brain with USP30, HSP60 and GAPDH antibodies. d, Immunoblots of cell lysates from HEK-293 cells stably expressing GFPâ€“parkin, transfected with the indicated control (Î²-Gal) and USP30 constructs. 24â€‰h after transfection, cells were treated with CCCP (5â€‰ÂµM, 2â€‰h) and lysed. e, Quantification of immunoblot signal for GFPâ€“parkin from d, normalized to actin. *Pâ€‰<â€‰0.05 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 6 experiments. Error bars represent s.e.m.


Extended Data Figure 2 USP30 counteracts mitochondrial ubiquitination and recruitment of p62 and LC3â€“GFP in CCCP-treated parkin-expressing cells.
a, Immunostaining of SH-SY5Y cells co-transfected with GFPâ€“parkin and the indicated control (Î²-Gal) and Flag-tagged USP30 constructs. 24â€‰h after transfection, cells were treated with CCCP (20â€‰ÂµM, 4â€‰h) and immunostained for GFP, Flag, endogenous TOM20, and polyubiquitin chains (detected with FK2 antibody). Co-localization of GFPâ€“parkin (shown in red) and polyubiquitin (shown in green) is shown in the right panel. Scale bars, 5â€‰Âµm. b, Quantification of GFPâ€“parkin-associated polyubiquitin staining intensity from a, normalized by GFPâ€“parkin area (integrated fluorescence intensity of FK2 staining colocalizing with GFPâ€“parkin/area of GFPâ€“parkin staining). ***Pâ€‰<â€‰0.001 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 6 experiments. Error bars represent s.e.m. c, Immunostaining of HeLa cells co-transfected with GFPâ€“parkin and the indicated control (Î²-Gal) and Flag-tagged USP30 constructs. Cells were treated as in a and immunostained for GFP, Flag, endogenous p62, and HSP60. Co-localization of GFPâ€“parkin (shown in red) and p62 (shown in green) is shown in the right panel. Scale bars, 10â€‰Âµm. d, Quantification of GFPâ€“parkin-associated p62 staining intensity from c, normalized by GFPâ€“parkin area (integrated fluorescence intensity of p62 staining colocalizing with GFPâ€“parkin/area of GFPâ€“parkin staining). *Pâ€‰<â€‰0.05 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 5 experiments. Error bars represent s.e.m. e, Immunostaining of HeLa cells co-transfected with RFP-parkin, LC3â€“GFP and the indicated control (Î²-Gal) and Flag-tagged USP30 constructs. Cells were treated as in a and immunostained for GFP, Flag and endogenous HSP60. Co-localization of RFP-parkin (shown in red) and LC3â€“GFP (shown in green) is shown in the right panel. Scale bars, 10â€‰Âµm. f, Quantification of RFP-parkin-associated LC3â€“GFP puncta area from e, normalized by RFP-parkin area (area of LC3â€“GFP puncta colocalizing with RFP-parkin/area of RFP-parkin staining). *Pâ€‰<â€‰0.05 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 5 experiments. Error bars represent s.e.m.


Extended Data Figure 3 mt-Keima imaging of mitophagy; PINK1 acts upstream of parkin in the mitophagy pathway.
a, mt-Keima differentially highlights cytoplasmic (green) and lysosomal (red) mitochondria. Cultured hippocampal neurons were transfected with mt-Keima and GFP. Following 2â€‰days of expression, cells were imaged with 458â€‰nm (shown in green) or 543â€‰nm (shown in red) light excitation. GFP signal was used to outline the cell (shown in white). Scale bar, 5â€‰Âµm. b, mt-Keima imaging in cultured hippocampal neurons before and after NH4Cl treatment (50â€‰mM, 2â€‰min). mt-Keima signal, collected with 543â€‰nm or 458â€‰nm laser excitation, is shown in red and green, respectively. Neutralizing cells with NH4Cl completely reversed the high ratio (543â€‰nm/458â€‰nm) signal to low ratio signal specifically in the round structures without affecting the tubular-reticular mitochondrial signal. Scale bar, 5â€‰Âµm. c, Imaging of mt-Keima and Lysotracker (Lysotracker green DND-26 shown in grey scale) in hippocampal neurons, showing Lysotracker stained the high ratio mt-Keima structures. Scale bar, 5â€‰Âµm. d, Post hoc immunostaining for endogenous Lamp1 in neurons imaged for mt-Keima signal, showing the colocalization of high-ratio mt-Keima pixels with Lamp1 staining. Immediately following mt-Keima imaging, cells were fixed and stained with anti-Lamp1 antibody (shown in grey scale). Scale bar, 5â€‰Âµm. e, Quantification of mitophagy index following 1, 3 and 6â€“7â€‰days of mt-Keima expression in cultured hippocampal neurons. **Pâ€‰<â€‰0.01 and ***Pâ€‰<â€‰0.001 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 29â€“85 cells. n = 2â€“4 experiments. Error bars represent s.e.m. f, g, Immunoblots of HEK-293 cell lysates transfected with the indicated cDNA and parkin (f) or PINK1 (g) shRNA constructs. PSD-95â€“Flag was co-transfected as a control. Representative blots from three independent experiments are shown. h, i, Immunoblots of endogenous parkin (h) and PINK1 (i) in cultured hippocampal neurons infected with adeno-associated virus expressing the indicated shRNAs. Representative blots from two independent experiments are shown. j, mt-Keima imaging in neurons transfected with PINK1â€“GFP and parkin-shRNAâ€‰1 (Î²-Gal and luciferase shRNA as controls). Scale bar, 5â€‰Âµm. k, Quantification of mitophagy index from j. ***Pâ€‰<â€‰0.001 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 55â€“75 cells. n = 3 experiments. Error bars represent s.e.m. l, mt-Keima imaging in neurons transfected with GFPâ€“parkin or GFP control. Scale bar, 5â€‰Âµm. m, Quantification of mitophagy index from l. (P = 0.22 by Mannâ€“Whitney test. n = 37â€“43 cells. n = 3 experiments. Error bars represent s.e.m. n, Mitochondria-targeted GFP (mito-GFP) imaging in neurons transfected with luciferase shRNA or USP30 shRNA constructs. Scale bar, 10â€‰Î¼m. Higher magnification images shown in the bottom panel. Scale bar, 5â€‰Î¼m. o, Quantification of fold change in area of individual dendritic mitochondria from n. ***Pâ€‰<â€‰0.001 by Mannâ€“Whitney test. n = 9 experiments. Error bars represent s.e.m.


Extended Data Figure 4 USP30 opposes autophagic flux.
a, Immunoblots of cell lysates from HEK-293 cells, transfected with GFPâ€“parkin and the indicated control (Î²-Gal) or USP30 constructs. b, Quantification of the LC3-II and p62 immunoblot signal from a, normalized to actin. **Pâ€‰<â€‰0.01 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 6 experiments. Error bars represent s.e.m. c, Immunoblots of cell lysates from HEK-293 cells, transfected with GFPâ€“parkin and Î²-Gal or USP30 wild type constructs, as indicated. 24â€‰h after transfection, cells were treated with bafilomycin (100â€‰nM, 0â€“8â€‰h). d, Quantification of the LC3-II immunoblot signal from c, normalized to actin. P = 0.97 by two-way ANOVA and Bonferroniâ€™s multiple comparison test. n = 5 experiments. Error bars represent s.e.m. e, Immunoblots of cell lysates from HEK-293 cells, transfected with GFPâ€“parkin and control (luciferase) or USP30 shRNA constructs. f, Quantification of the LC3-II and p62 immunoblot signal from e, normalized to actin. g, Immunoblots of cell lysates from HEK-293 cells, transfected with GFPâ€“parkin and control (luciferase) or USP30 shRNA constructs. 6â€‰days after transfection, cells were treated with bafilomycin (100â€‰nM, 0â€“8â€‰h). h, Quantification of the LC3-II immunoblot signal from g, normalized to actin. **Pâ€‰<â€‰0.01 by two-way ANOVA and Bonferroniâ€™s multiple comparison test. n = 4 experiments. Error bars represent s.e.m. i, j, Immunoblots of cell lysates from HEK-293 cells, transfected with GFPâ€“parkin and the indicated control (Î²-Gal) or USP30 constructs. 24â€‰h after transfection, cells were treated with CCCP (20â€‰ÂµM, 0â€“6â€‰h). Î²-Gal transfected cells were also treated with bafilomycin (100â€‰nM, 0â€“6â€‰h) as a control (shown in j). k, Quantification of the p62 immunoblot signal from i, j, normalized to actin. *Pâ€‰<â€‰0.05 and **Pâ€‰<â€‰0.01 by two-way ANOVA and Bonferroniâ€™s multiple comparison test. n = 6 experiments. Error bars represent s.e.m. l, Immunoblots of cell lysates from HEK-293 cells, transfected with GFPâ€“parkin and control (luciferase) or USP30 knockdown constructs. 24â€‰h after transfection, cells were treated with CCCP (20â€‰ÂµM, 0-8â€‰h) and bafilomycin (100â€‰nM), as indicated. m, Quantification of the p62 immuoblot signal from l, normalized to actin. *Pâ€‰<â€‰0.05 by two-way ANOVA and Bonferroniâ€™s multiple comparison test. n = 6 experiments. Error bars represent s.e.m.


Extended Data Figure 5 USP30 deubiquitinates multiple mitochondrial proteins.
a, Proteins whose ubiquitination is regulated by both USP30 and parkin. Asymmetric â€˜volcano plotâ€™ showing the subset of 41 proteins whose ubiquitination significantly increased (Pâ€‰<â€‰0.05) by both GFPâ€“parkin overexpression (right side) and USP30 knockdown (left side) in â€˜comboâ€™ treatments compared to â€˜CCCP-treatmentâ€™ alone. â€˜Comboâ€™ refers to cells treated with â€˜CCCP + GFPâ€“parkinâ€™ or â€˜CCCP + USP30-shRNAâ€™. For this subset of proteins, fold-increase in ubiquitination (x-axis) and the P value (y-axis) are reported. Mitochondrial proteins (as identified by the Human MitoCarta database) are shown in red. Fold-changes and P values for all proteins with quantified K-GG peptides are reported in Supplementary Table 1. b, Immunoblots of anti-HA-immunoprecipitates for endogenous MIRO1 and TOM20 in parental HEK-293 cell line (that lacks GFPâ€“parkin) transfected with HAâ€“ubiquitin and the indicated Flag-tagged USP30 constructs (Î²-Gal as control). 24â€‰h after transfection, cells were treated with CCCP (5â€‰ÂµM, 2â€‰h) and ubiquitinated proteins were immunoprecipitated with anti-HA beads. Immunoprecipitates and inputs were blotted with the indicated antibodies. n = 2 experiments. c, Immunoblots of total lysates of GFPâ€“parkin HEK-293 stable cells that were transfected with the indicated Flag-tagged USP30 constructs, and then treated with CCCP (5â€‰ÂµM, 0â€“6â€‰h). d, Quantification of MIRO1 and TOM20 immunoblot signals from c, normalized to actin. Immunoblot signals for all other proteins (VDAC, Mfn-1, Tom70, HSP60, TIMM8a) did not reach significance. *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.001 compared to Î²-Gal control, by two-way ANOVA and Bonferroniâ€™s multiple comparison test. n = 3-5 experiments.) e, Immunoblots of anti-HA-immunoprecipitates for endogenous MIRO1 and TOM20 with USP30 knockdown. HEK-293 cells stably expressing GFPâ€“parkin were transfected as indicated with HAâ€“ubiquitin, human USP30 shRNA and rat USP30â€“Flag cDNA that is insensitive to the shRNA (luciferase shRNA and Î²-Gal as controls). 6â€‰days after transfection, cells were processed as in b. n = 2 experiments.


Extended Data Figure 6 TOM20 activates mitophagy through ubiquitination; USP30 is a parkin substrate.
a, Extracted ion chromatograms corresponding to K-GG peptides identified from TOM20 in the USP30 knockdown mass spectrometry. Relative abundance of each ubiquitinated peptide is shown on the y-axis relative to the most abundant analysis, with precursor ion m/z indicated above each peak. The sequence of each K-GG peptide is shown below in green. Asterisks denote modified lysine residues. b, Immunoblots of HAâ€“ubiquitin precipitates from GFPâ€“parkin HEK-293 cells transfected with the indicated constructs. Following transfection and treatment with CCCP (5â€‰ÂµM, 2â€‰h), ubiquitinated proteins were immunoprecipitated with anti-HA beads, and precipitates and inputs were blotted with the indicated antibodies. n = 3 experiments. c, mt-Keima imaging in neurons transfected with the indicated TOM20â€“MYC and USP30 constructs (Î²-Gal as control). Scale bar, 5â€‰Âµm. d, Quantification of mitophagy index from c. ***Pâ€‰<â€‰0.001 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 67â€“80 cells for all groups. n = 3 experiments. Error bars represent s.e.m. e, Extracted ion chromatograms corresponding to K-GG peptides identified from USP30 in the parkin overexpression mass spectrometry. Similar to a. f, Immunoblots of anti-HA-immunoprecipitates for endogenous USP30 from cells transfected with wild-type, K161N and G430D GFPâ€“parkin constructs. After 24â€‰h of expression, cells were treated with CCCP (20â€‰ÂµM, 2â€‰h) and ubiquitinated proteins were immunoprecipitated with anti-HA beads. Immunoprecipitates and inputs were blotted with the indicated antibodies. g, Quantification of immunoblot signal for co-immunoprecipitated USP30 from f. Protein levels co-immunoprecipitating with anti-HA beads are normalized to the â€˜wild-type GFPâ€“parkin + CCCPâ€™ group. ***Pâ€‰<â€‰0.001 by one-way ANOVA and Dunnettâ€™s multiple comparison test, compared to â€˜wild-type GFPâ€“parkin + CCCPâ€™. n = 5 experiments. Error bars represent s.e.m. h, Immunoblots of lysates prepared from HEK-293 cells transfected with the indicated GFP and GFPâ€“parkin constructs and treated with CCCP (20â€‰ÂµM, 0â€“6â€‰h). i, Quantification of immunoblot signal for USP30 from h, normalized to actin. **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.001 compared to wild-type GFPâ€“parkin, by two-way ANOVA and Bonferroniâ€™s multiple comparison test. n = 4 experiments. Error bars represent s.e.m. j, Immunoblots of lysates prepared from HEK-293 cells transfected with GFPâ€“parkin and treated as indicated (CCCP 20â€‰ÂµM, 6â€‰h; bafilomycin (100â€‰nM), MG132 (20â€‰ÂµM), and epoxomicin (2â€‰ÂµM) were added 15â€‰min before CCCP treatment). k, Quantification of immunoblot signal for USP30 from j, normalized to actin. *Pâ€‰<â€‰0.05 and ***Pâ€‰<â€‰0.001 by one-way ANOVA and Dunnettâ€™s multiple comparison test, compared to â€˜DMSO + CCCPâ€™. n = 4 experiments. Error bars represent s.e.m.


Extended Data Figure 7 USP30 knockdown rescues mitophagy defects in cells expressing mutant parkin.
a, Immunoblot for endogenous USP30 in SH-SY5Y cells transfected with USP30 siRNA for 3â€‰days. b, c, Immunostaining in SH-SY5Y cells stably expressing GFPâ€“parkin(G430D), transfected with siRNAs against USP30, USP6 or USP14. 3â€‰days after transfection, cells were treated with CCCP (20â€‰ÂµM, 24â€‰h), then fixed and stained for GFP and endogenous TOM20. Scale bars, 5â€‰Âµm. d, Quantification of fold change in TOM20 staining intensity from b and c, normalized to control siRNA. **Pâ€‰<â€‰0.01 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 3 experiments. Error bars represent s.e.m. e, Immunostaining of SH-SY5Y cells expressing GFPâ€“parkin(G430D), transfected as indicated, and treated with CCCP (20â€‰ÂµM, 24â€‰h). Rat USP30 cDNA is insensitive to human USP30 siRNA. f, Quantification of fold change in TOM20 intensity from e. Kruskalâ€“Wallis test, n = 3 experiments. g, Immunostaining of SH-SY5Y cells expressing GFPâ€“parkin(K161N), and transfected with USP30 siRNA. Following 3â€‰days of knockdown, cells were treated with CCCP (20â€‰ÂµM, 24â€‰h), then fixed and stained for GFP and endogenous TOM20 and HSP60. Scale bars, 5â€‰Âµm. h, Quantification of fold change in TOM20 or HSP60 staining intensity from g, normalized to control siRNA. *Pâ€‰<â€‰0.05 by Mannâ€“Whitney test, n = 4 experiments. Error bars represent s.e.m. i, k, Immunostaining of SH-SY5Y cells expressing GFPâ€“parkin(K161N), and transfected with USP30 siRNA. Following 3â€‰days of knockdown, cells were treated with CCCP (20â€‰ÂµM, 4â€‰h), then fixed and stained for GFP and endogenous p62 (i) or LC3 (k). Co-localization of GFPâ€“parkin (show in green) and p62 or LC3 (shown in red) is shown in the lower panel. Scale bars, 5â€‰Âµm. j, l, Quantification of GFPâ€“parkin(K161N)-associated p62 (j) or LC3 (l) staining intensity normalized by GFPâ€“parkin(K161N) area, from i, k. **Pâ€‰<â€‰0.01 by Mannâ€“Whitney test, n = 9â€“10 experiments. Error bars represent s.e.m. m, mt-Keima imaging in neurons transfected with PINK1 shRNA and USP30(C77A)â€“Flag. Scale bar, 5â€‰Âµm. n, Quantification of mitophagy index from m. Kruskalâ€“Wallis test. n = 127â€“166 cells. n = 7 experiments. Error bars represent s.e.m.


Extended Data Figure 8 USP30 knockdown decreases oxidative stress in neurons and rescues mitochondrial morphology defects in PINK1 mutant flies.
a, Ratiometric mito-roGFP imaging in hippocampal neurons transfected with USP30 shRNA. Following measurement of ratiometric mito-roGFP signal in individual cells, the dynamic range of the probe was calibrated by treating cultures sequentially with DTT (1â€‰mM) to fully reduce the probe, and aldrithiol (100â€‰ÂµM) to fully oxidize the probe13. The â€˜relative oxidation indexâ€™ is shown in a â€˜colour scaleâ€™ from 0 (mito-roGFP ratio after DTT treatment, shown in black) to 1 (mito-roGFP ratio after aldrithiol treatment, shown in red). b, Quantification of relative oxidation index from a. ***Pâ€‰<â€‰0.001 by Mannâ€“Whitney test. n = 24 cells for luciferase shRNA and 36 cells for USP30 shRNA. n = 3 experiments. Error bars represent s.e.m. c, Quantitative RTâ€“PCR of dUSP30 mRNA. qRTâ€“PCR in Actin-GAL4, UAS-dUSP30RNAi, and Actin-GAL4 > UAS-dUSP30RNAi flies, shown relative to Actin-GAL4. dUSP30 mRNA levels were normalized to internal control Drosophila RpII140 mRNA levels. ***Pâ€‰<â€‰0.001 by one-way ANOVA and Dunnettâ€™s multiple comparison test. n = 3 experiments. Error bars represent s.e.m. d, Transverse sections of Drosophila indirect flight muscles of indicated genotypes. Arrowheads, electron-dense mitochondria; dashed lines, â€˜paleâ€™ mitochondria with disorganized cristae. Scale bars, 1â€‰Âµm (top), 0.2â€‰Âµm (bottom panels). e, f, Quantification of mitochondrial morphology (e) and size distribution (f) from d. Mannâ€“Whitney test (e). Kolmogorovâ€“Smirnov test, pink1B9 versus â€˜pink1B9 + dUSP30 knockdownâ€™ (f). n = 4 flies per genotype. g, Transverse sections of indirect flight muscles (IFMs) from vehicle- or paraquat-treated flies of indicated genotypes. Scale bar, 0.5â€‰Âµm.


Extended Data Figure 9 Neurodegeneration was not observed in genetic parkin fly models; dUSP30 knockdown protects against paraquat-induced climbing and dopamine deficits.
a, c, e, Representative images of the indicated dopaminergic neuron clusters in flies with indicated genotypes. Scale bars, 10â€‰Âµm. b, d, f, Blind quantification for panels a, c, e. P values calculated by Studentâ€™s t-test (f) and one-way ANOVA and Bonferroniâ€™s multiple comparison test (b, d). n = 4â€“5 hemibrains per genotype. Similar results were obtained with additional counts performed for the PPL1 cluster, n = 18â€“40 hemibrains per genotype. Error bars represent s.e.m. g, Dopamine levels in fly brains for the indicated genotypes. n = 16 flies per genotype. P values calculated by one-way ANOVA and Bonferroniâ€™s multiple comparison test. h, Climbing assay in control flies (Actin-GAL4). Flies were treated with vehicle control (5% sucrose) or paraquat (10â€‰mM, 48â€‰h). l-3,4-dihydroxyphenylalanine (1â€‰mM, 48â€‰h) was administered simultaneously with paraquat, as indicated. Graph shows % of flies climbing 15â€‰cm in 30â€‰s. **Pâ€‰<â€‰0.01 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 6 experiments. Error bars represent s.e.m. i, Serotonin levels per fly head, as assessed by ELISA. Flies were treated with paraquat (10â€‰mM, 48â€‰h) or vehicle control (5% sucrose). P values calculated by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 8 heads, n = 2 experiments. Error bars represent s.e.m. j, Climbing assay of dUSP30 knockdown flies driven by Th-GAL4. Flies were treated with paraquat (10â€‰mM, 48â€‰h) or vehicle control (5% sucrose). Graph shows % of flies climbing 15â€‰cm in 30â€‰s. *Pâ€‰<â€‰0.05 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 4 experiments. Error bars represent s.e.m. k, Climbing assay of dUSP30 knockdown flies driven by Actin-GAL4. Flies were treated with paraquat (10â€‰mM, 48â€‰h) or vehicle control (5% sucrose). Graph shows % of flies climbing 15â€‰cm in 30â€‰s. **Pâ€‰<â€‰0.01 and ***Pâ€‰<â€‰0.001 by one-way ANOVA and Bonferroniâ€™s multiple comparison test. n = 6â€“10 experiments. Error bars represent s.e.m. l, m, Normalized dopamine levels per fly head, as assessed by ELISA. Flies of the indicated genotype were treated with paraquat (10â€‰mM, 48â€‰h) or vehicle control (5% sucrose). *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01, and ***Pâ€‰<â€‰0.001 by Mannâ€“Whitney test. n = 8â€“28 heads. Error bars represent s.e.m.


Extended Data Figure 10 Knockdown of DUBs dYOD1 or dUSP47 in flies does not provide protection against paraquat; hUSP30 overexpression reverses dUSP30 knockdown benefits.
a, b, Quantitative RTâ€“PCR measurement of dUSP47 (a) and dYOD1 (b) mRNA levels in flies of the indicated genotypes, expressed as relative to Actin-GAL4 genotype. **Pâ€‰<â€‰0.01 and ***Pâ€‰<â€‰0.001 by one-way ANOVA and Dunnettâ€™s multiple comparison test. n = 3 technical replicates. Error bars represent s.e.m. c, Survival curves of flies with dUSP47 or dYOD1 knockdown, treated with vehicle (5% sucrose) or paraquat (10â€‰mM). Graph shows percent of flies alive at indicated times. *Pâ€‰<â€‰0.05 and **p<0.01 by two-way ANOVA and Bonferroniâ€™s multiple comparison test. n = 5â€“7 experiments. Error bars represent s.e.m. d, Survival curves of flies with dUSP30 knockdown driven by Th-GAL4, treated with paraquat (10â€‰mM). Graph shows percent of flies alive at indicated times after feeding with paraquat. **Pâ€‰<â€‰0.01 and ***Pâ€‰<â€‰0.001 by two-way ANOVA and Bonferroniâ€™s multiple comparison test. n = 3 experiments. Error bars represent s.e.m. e, f, Quantitative RTâ€“PCR measurement of hUSP30 and dUSP30 mRNA levels in flies of the indicated genotypes. **Pâ€‰<â€‰0.01 and ***Pâ€‰<â€‰0.001 by one-way ANOVA and Dunnettâ€™s multiple comparison test. n = 4 experiments. Error bars represent s.e.m. g, Climbing assay for flies overexpressing hUSP30. Flies of indicated genotypes were fed with vehicle (5% sucrose) or paraquat (10â€‰mM, 48â€‰h); graph shows percent of flies climbing 15â€‰cm in 30â€‰s. *Pâ€‰<â€‰0.05 by Kruskalâ€“Wallis test and Dunnâ€™s multiple comparison test. n = 4 experiments. Error bars represent s.e.m. h, Survival assay for flies overexpressing hUSP30. Flies were fed paraquat (10â€‰mM); graph shows % live flies at indicated times. *Pâ€‰<â€‰0.05 and ***Pâ€‰<â€‰0.001 by two-way ANOVA and Bonferroniâ€™s multiple comparison test. n = 4â€“11 experiments. Error bars represent s.e.m.
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