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            Abstract
2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone NÎµ-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases.
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                    Figure 1: The overall folds of the ribosomal oxygenases.


Figure 2: Comparison of the substrate structures for ROXs and JmjC-containing enzymes.


Figure 3: Features of ROXâ€“substrate binding.


Figure 4: Proposed sequence of evolution of active-site chemistry of ROXs and related JmjC-containing 2OG-dependent oxygenases.
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Extended data figures and tables

Extended Data Figure 1 Schematic protein topologies of ROXs and related 2OG-dependent oxygenases.
aâ€“f, Protein topologies of MINA53â€“Mnâ€“2OGâ€“RPL27A(32â€“50) (a), NO66â€“Mnâ€“NOGâ€“RPL8(205â€“224) (b), RmYcfDâ€“Mnâ€“NOGâ€“L16(72â€“91) (c), FIHâ€“Feâ€“NOGâ€“HIF-1Î±(786â€“826) (PDB accession 1H2K) (d), PHF8â€“Feâ€“NOGâ€“H3K4me3K9me2(2â€“25) (PDB accession 3KV4) (e) and KDM4Aâ€“Niâ€“NOGâ€“H3K9me2(7â€“14) (PDB accession 2OX0) (f) (substrates are not shown). DSBH core elements, labelled Î²Iâ€“Î²VIII, are in green, helices in cyan, additional Î²-strands in red, random coils in black and the insert between the fourth and fifth Î²-strands in blue. Note that not all the DSBH oxygenases maintain antiparallel hydrogen-bond pairing between Î²II and Î²VII even though the Ï•/Ïˆ angles (Î²II) are within the Î²-region of the Ramachandran plot. Figures were generated using TopDraw47.


Extended Data Figure 2 ROX dimerization domains.
a, Comparison of the dimerization domains in ROXs and FIH. b, Intermolecular interactions observed at dimerization interfaces (monomer A, grey; monomer B, yellow). Validation of the functional relevance of the ROX dimers comes from biochemical and kinetic studies demonstrating loss of activities with most variants. The dimer interfaces in the ROXs are related to that of FIH; we propose that the FIH dimerization fold evolved from that of ROXs17,48. The large buried surface area (>3,000â€‰Ã…2) within all ROX dimerization domains is sufficient for dimerization in solution, as reported for NO66 (ref. 49). The interactions observed in dimerization include both hydrogen bonds/electrostatic interactions and hydrophobic interactions. In the EcYcfD/RmYcfD dimerization domains, residues involved in hydrophobic interactions are mainly from Î±2 and are well conserved (RmYcfD residues in parentheses): Pheâ€‰214 (Metâ€‰223), Valâ€‰242 (Ileâ€‰250), Metâ€‰247 (Leuâ€‰255), Leuâ€‰250 (Ileâ€‰258), Metâ€‰253 (Leuâ€‰261), Metâ€‰254 (Leuâ€‰262), Leuâ€‰257 (Leuâ€‰265), Ileâ€‰258 (Ileâ€‰257). Hydrogen bonding/electrostatic interactions are more important in RmYcfD dimerization than in EcYcfD/human ROXs. The network of hydrogen bonds between the two RmYcfD monomers A and B includes Aspâ€‰256Aâ€“Argâ€‰269Bâ€“Glnâ€‰259Aâ€“Aspâ€‰267Bâ€“Argâ€‰263A, which, owing to two-fold symmetry, creates a total of eight hydrogen bonds. In EcYcfD, Leuâ€‰255 (Argâ€‰263 in RmYcfD) is positioned at the centre of the equivalent network. Furthermore, in RmYcfD Glnâ€‰216 is positioned to hydrogen bond with the backbone amide N of Argâ€‰234 and the carbonyl O of Leuâ€‰261. Hydrogen bonding in EcYcfD dimerization is less extensive, with only the Asnâ€‰226 amide N positioned to form a hydrogen bond to the hydroxyl group O of Thrâ€‰207 and Argâ€‰208 hydrogen bonding with the carbonyl O of Glyâ€‰224. However, hydrophobic/aromatic clusters are involved in EcYcfD dimerization, including by the side chains of Leuâ€‰210A, Leuâ€‰223A, Tyrâ€‰217A (Î±1), Pheâ€‰264A, Trpâ€‰267A, Pheâ€‰268A and Pheâ€‰271A (Î±3) from monomer A and Valâ€‰242B, Metâ€‰247B, Leuâ€‰250B (Î±2) from monomer B. As in the YcfDs, in NO66 there is only one apparent salt-bridge interaction at the dimer interface, that is, between Argâ€‰474 and Aspâ€‰495 (Argâ€‰474A NH1â€“Aspâ€‰495B OÎ´1, 2.9â€‰Ã…; Argâ€‰474A NH2â€“Aspâ€‰495B OÎ´2, 2.7â€‰Ã…), which links the Î±2 and Î±3 helices of opposite monomers. Similarly a â€˜complex salt bridgeâ€™ is observed in MINA53 between Argâ€‰313 and Gluâ€‰320/Aspâ€‰317 (Argâ€‰313B NH1â€“Gluâ€‰320A OÎµ2, 3.2â€‰Ã…; Argâ€‰313B NH2â€“Gluâ€‰320 OÎµ1, 2.7â€‰Ã…; Argâ€‰313A NH2â€“Aspâ€‰317 OÎ´1, 2.9â€‰Ã…) that connects the Î±2 helices of different monomers. Backbone amide hydrogen bonding additionally occurs between the NO66 residues Asnâ€‰426 and Leuâ€‰454, Argâ€‰452 and Trpâ€‰428, Pheâ€‰450 and Glyâ€‰429. MINA53 also has backbone-to-side-chain interactions between residues from flexible loops connecting Î±1â€“Î±2 and Î±2â€“Î±3 helices (Glnâ€‰297B Oâ€“Lysâ€‰331A NÎ¶, 3.7â€‰Ã…; Serâ€‰300B OÎ³â€“Gluâ€‰324A O, 3.1â€‰Ã…). The role of hydrophobic/aromatic clusters in dimerization is apparent in NO66 where the Î±2 helices from different monomers are further apart when compared with those of YcfDs and MINA53 and hence have less buried surface area. However, in NO66, an apparent hydrophobic cluster forms between the N-terminal part of Î±1 and the C-terminal part of Î±2. NO66 Trpâ€‰428 (Trpâ€‰264 in MINA53) is positioned at the start of the Î±1 helix of monomer A and forms the centre of a hydrophobic cluster, interacting with residues Pheâ€‰431A, Ileâ€‰435A and Leuâ€‰432A on monomer A, and Valâ€‰481B, Leuâ€‰484B, Metâ€‰462B, Pheâ€‰477B and Proâ€‰455B on monomer B. NO66 Trpâ€‰428 also forms an apparent cationâ€“Ï€ interaction with residue Lysâ€‰480. The similarly positioned Trpâ€‰264 in MINA53 maintains hydrophobic contacts with Pheâ€‰267 and Leuâ€‰268 of the same monomer and with Ileâ€‰290, Proâ€‰291 and Leuâ€‰294 of the other monomer, in addition to a cationâ€“Ï€ interaction with Argâ€‰307. Other hydrophobic contacts observed in MINA53 dimerization involving the Î±1 and Î±2 helices of different monomers include between the side chains of residues Leuâ€‰308/Î±2 (interacting with Leuâ€‰319/Î±2 and Pheâ€‰267, Leuâ€‰268, Thrâ€‰271 of Î±1), Leuâ€‰312/Î±2 (interacting with Ileâ€‰272/Î±1 and Leuâ€‰315/Î±2) and Pheâ€‰277/Î±1 (interacting with Valâ€‰276, Leuâ€‰269 and Ileâ€‰272 of Î±1). Disruption of ROX dimerization leads to loss of activity, as observed for MINA53(R313E) and EcYcfD(I211R) variants as well as for truncated MINA53 (1â€“265, 1â€“299) without dimerization and the C-terminal domains. Non-denaturing gel electrophoresis was used to investigate ROX oligomerization states in solution, which demonstrates disruption of dimerization in EcYcfD(I211R) and MINA53(R313E). The loss of activity via destabilizing ROX dimerization is reminiscent of similar roles of FIH dimerization in catalysis (An FIH(L340R) variant that was predominantly monomeric is inactive)50. Data show mean and standard error of the mean (s.e.m.) (n = 3).


Extended Data Figure 3 Interaction of the ROX C-terminal WH domains with their respective ribosomal protein substrates.
aâ€“e, The figure shows how ROX C-terminal domains interact with their substrates. A DALI search51 indicates that a close structural homologue of the ROX C-terminal domain is the â€˜peptide clampâ€™ (WH) domain of MccB, an enzyme involved in the biosynthesis of the microcin C7 antibiotic52. WH domains, a subtype of the helix-turn-helix (HTH) family, are nucleic acid/protein-interacting domains and occur in different cellular pathways, from transcriptional regulation to RNA processing13. Although the overall negative charge of ROX WH domains suggests that they may not directly interact with nucleic acids, it is notable that the prokaryotic ribosomal proteins L6, which is located proximal to L16 in intact ribosomes53, and the transcriptional regulator PhoP contain WH folds54; the latter is interesting because in the E. coli K12 genome the ycfD gene is located adjacent to those for the PhoP/PhoQ two component signalling system, which is involved in stress responses55. a, General topology of the C-terminal WH domain showing two distinct binding sites for L16 (yellow) and RPL27A (magenta)/RPL8 (orange) involving residues either from an N-terminal loop connecting the WH and dimerization domains (as in RmYcfD) or from an extended loop between WH Î²3â€“Î²4 (as in human ROXs). bâ€“e, Comparisons between the WH domains in MccB (b), MINA53 (c), NO66 (d) and RmYcfD/EcYcfD (e) showing the interactions observed between this domain and the substrate(s). Note that although both the RPL27A and RPL8 substrates make hydrophobic contacts with the WH domains in MINA53 (Metâ€‰405 and Metâ€‰406) (c) and NO66 (Valâ€‰576 and Tyrâ€‰577) (d), RmYcfD uses Argâ€‰285 to form a hydrogen bond with the L16 Metâ€‰83 (RmYcfD Argâ€‰285 NH2â€“L16 Metâ€‰83 O, 2.5â€‰Ã…) (e). Right panels show the partial loss of activity with mutations of MINA53 (M405A), NO66 (Y577A) and EcYcfD (H277C) residues from WH domains. Data show mean and s.e.m. (n = 3).


Extended Data Figure 4 Comparison of 2OG/co-substrate binding in ROXs and representative 2OG-dependent oxygenases.
The identity of the basic residue (Arg or Lys) that binds the 2OG C5 carboyxlate via electrostatic interactions is indicated along with which of the eight DSBH (Iâ€“VIII) strands it is located on. The occurrence and positioning of the basic Arg/Lys is characteristic of each subfamily14,15. 2OG binding also involves other polar residues including alcohols, that is, a Ser (Î²VIII, part of the RXS motif as present in, for example, DAOCS, ANS, FTO and algal P4H) or Thr (Î²II, for example, as in some KDMs: JMJD3, JMJD6, PHF8 and UTX) or Tyr (non-DSBH Î²-strand, for example, as in FIH, KDM4A, ABH2 and PHD2) and sometimes, water molecule(s) (reviewed in refs 15,56,57). In an analogous position to the serine of the RXS motif (Î²VIII), human ROXs have histidine residues, MINA53 Hisâ€‰253/NO66 Hisâ€‰417 (Î²VIII), which form part of a hydrogen-bond network involving MINA53 Thrâ€‰255/NO66 Thrâ€‰419 (Î²VIII), a water molecule, and the 2OG carboxylates. Although EcYcfD/RmYcfD has Asnâ€‰197/Thrâ€‰206 at this position (Î²VIII), it is the conserved serine from Î²I (114 in EcYcfD and 122 in RmYcfD) that is positioned to hydrogen bond with the 2OG C5 carboxylate.


Extended Data Figure 5 Human ROXâ€“substrate complexes showing disulphide crosslinking sites and difference electron density for the substrate residues.
a, Strategy adopted to obtain the crosslinked structures (the same strategy can be used for other protein hydroxylases/KDMs). bâ€“d, Different disulphide crosslinking sites (red arrows) that form NO66â€“RPL8 cysteineâ€“disulphide pairs under equilibrating conditions. Analyses of the 2OG-oxygenaseâ€“substrate complexes reveal that substrate residues atâ€‰Â±2 positions relative to the hydroxylated residues make interactions with enzyme residues within a âˆ¼12â€‰Ã… radius of the metal. To obtain stable NO66â€“RPL8 complexes, we engineered NO66 variants substituting Cys residues within âˆ¼12â€‰Ã… radius of the metal at positions considered likely to be involved in substrate binding based on the analyses of other 2OG-oxygenaseâ€“substrate structures21,22,26 and the evolutionary/phylogenetic analyses of NO66/NO66-like proteins in eukaryotes. We also substituted Cys residues atâ€‰Â±2 positions on the peptide substrate sequence, relative to the hydroxylated residue. Electrospray ionizationâ€“mass spectrometry (ESIâ€“MS) assays were used to identify the best crosslinking yields for the NO66â€“RPL8 pairs under equilibrating conditions. The following crosslinked pairs were used for crystallization: wild-type NO66 with RPL8(G220C), a double NO66 variant L299C/C300S with RPL8(G220C), and a single NO66 variant S373C with RPL8(G214C). Structures were obtained for wild-type NO66â€“RPL8(G220C) (complex 1; b), NO66(L299C/C300S)â€“RPL8(G220C) (complex 2; c), and NO66(S373C)â€“RPL8(G214C) (complex 3; d) in combination with NOG/Mn(II) in C2 space group, 2.25â€“2.50â€‰Ã… resolution with two molecules per asymmetric unit; RPL8 residues 215â€“223 (complex 1), 213â€“223 (complex 2) and 212â€“223 (complex 3) were observed bound to the NO66 active site. e, Superimposition of the three complex structures. Note that the key RPL8 residues (215â€“219), including the hydroxylated Hisâ€‰216, are observed in near identical conformations (r.m.s.d. 0.29â€“0.36â€‰Ã… for CÎ± atoms); the similarity of the substrate positions in all the three NO66 structures suggests that they all probably represent functional complexes. On the basis of the NO66â€“RPL8 structures, we identified a MINA53 residue, Y209C, suitable for crosslinking, which we crystallized in complex with RPL27A(G37C) (g). Foâ€‰âˆ’â€‰Fc omit electron-density maps contoured at 3Ïƒ are shown as green (RPL8) and grey (RPL27A) meshes around the substrate residues. To test whether the wild-type/mutant enzymes and altered substrates still function catalytically we carried out endpoint and time-course assays using variable enzyme-to-substrate ratios. f, h, The biochemical data show that for both wild-type NO66 (f) and MINA53 (h) (wild type and Y209C), all the Cys-substituted peptides function as substrates. In the case of MINA53, the Y209C variant with which we obtained the MINA53â€“RPL27A complex structure is approximately fourfold more active than wild-type MINA53. Data are mean and s.e.m. (n = 3). We also tested wild-type NO66 for reaction between enzyme cysteines and the cysteines of modified substrate peptides by ESIâ€“MS. Despite testing multiple combinations, we only observed disulphide formation in cases where we were also able to obtain crystal structures for substrate complexes. All possible combinations of human ROX wild type or variants and the peptides containing Cys at variable positions were used for the cross-reactivity tests: NO66: wild type, R297C, L299C/C300S, S373C, S421C; RPL8: wild type, G214C, H218C and G220C; MINA53: wild type and Y209C; RPL27A: wild type and G37C. The combined activity and MS analyses suggest that in order to form stable/crystallizable cross-linked complexes, the substrates need to be recognized by the enzyme active sites in a catalytically relevant manner (a).


Extended Data Figure 6 Mutagenesis analyses of the substrate-binding residues located on the JmjC catalytic domains of MINA53, NO66 and RmYcfD.
aâ€“c, MINA53 (a), NO66 (b) and RmYcfD (c) are shown in colour-coded sticks. Left panels show views from the active sites of ROXâ€“substrate complexes and the right panels show the effects of mutations on ROX catalysis. Data are mean and s.e.m. (n = 3). Analyses of ROXâ€“substrate complexes reveal important interactions between ROX and their ribosomal protein substrates. With human ROXs, the binding of ribosomal RPL27A Hisâ€‰39 (light blue)/RPL8 Hisâ€‰216 (orange) involves a series of hydrogen bonds to backbone amides and the side chains of MINA53/NO66 residues: MINA53 Glnâ€‰136/NO66 Argâ€‰297, MINA53 Asnâ€‰165/NO66 Asnâ€‰326, MINA53 Tyrâ€‰167/ NO66 Tyrâ€‰328 and MINA53 Serâ€‰257/NO66 Serâ€‰421. In addition, in the MINA53â€“RPL27A complex, Leuâ€‰38 and Argâ€‰42 of RPL27A make hydrophobic contacts with MINA53 Leuâ€‰176 and a salt-bridge interaction with MINA53 Aspâ€‰333, respectively. We produced variants of all these residues to investigate their roles on substrate binding. The results of the endpoint assays as well as kinetic studies on the variants (right panels) show that substitution of these residues causes substantial losses of activity. c, In the case of RmYcfD, the hydroxylated residue L16 Argâ€‰82 binds in a hydrophobic cleft lined by RmYcfD Tyrâ€‰137 and RmYcfD Metâ€‰120 side chains and hydrogen bonds to RmYcfD Aspâ€‰118 and RmYcfD Serâ€‰208. To test the crystallographically observed binding mode, variants of RmYcfD residues (Aspâ€‰118, Metâ€‰120, Tyrâ€‰137 and Serâ€‰208, highlighted) were prepared in EcYcfD (corresponding to Aspâ€‰110, Metâ€‰112, Tyrâ€‰129 and Serâ€‰199, respectively). Mutagenesis studies on all ROXs support the crystallographically observed binding modes of the substrate residues. The combined biochemical and structural data also provide insights into the substrate selectivity of ROXs over other oxygenases.


Extended Data Figure 7 Conformational changes on substrate binding in ROX.
aâ€“c, Conformational changes at the domain and residue levels in MINA53 (dark salmon and red with/without RPL27A, light blue) (a), NO66 (slate and cyan with/without RPL8, orange) (b) and RmYcfD (grey and split pea with/without L16, yellow) (c). Although the overall movement observed for the C-terminal WH domain on substrate binding is more significant in MINA53 as compared to other ROXs, the RmYcfD structures with and without substrate show marked local changes in the side chains of substrate-binding residues (see below). a, The inset highlights local changes to the active-site region in MINA53 in the presence (green sticks) or absence (yellow sticks) of substrate; MINA53 uses an acidic residue, Aspâ€‰333, located on an Î±-helix connecting the dimerization and WH domains, to form a catalytically important salt-bridge interaction with RPL27A Argâ€‰42. Support for this statement comes from activity analyses on variants of both RPL27A and MINA53. We have previously reported that a mutation of Argâ€‰42 in RPL27A to Ala results in <5% hydroxylation8. The D333A variant of MINA53 ablates hydroxylation (almost completely) of native RPL27A in all tested substrate:enzyme ratios (Extended Data Fig. 6). In the substrate-unbound form, MINA53 Aspâ€‰333 has two alternative conformations, indicating flexibility. The NO66 substrate RPL8 has an Ileâ€‰219 at the analogous position to Argâ€‰42 of RPL27A that makes hydrophobic contacts with the Tyrâ€‰577 side chains from the WH domain of NO66 (b). In the case of RmYcfD, the substrate-interacting residues located on the Î²IIâ€“Î²III loop (Tyrâ€‰137), the Î²IVâ€“Î²V insert (Argâ€‰169), the dimerization domain (Argâ€‰212 and Gluâ€‰218) and on the loop connecting the dimerization and WH domains (Argâ€‰284) are observed in different conformations in the structures with and without substrate, probably reflecting induced fit on substrate binding (c). Substitutions of these residues have variable effects on ROX catalyses (Extended Data Fig. 6).


Extended Data Figure 8 Comparison of YcfDs from E. coli and R. marinus.
aâ€“d, Differences between YcfDs from E. coli (green) and R. marinus (grey) are shown. a, Superimposition of EcYcfD and RmYcfDâ€“L16 complex structures showing crystallographically observed differences, particularly in the dimerization and Î²IVâ€“Î²V loop regions. The Î²IVâ€“Î²V insert is highlighted in crimson red and pink in EcYcfD and RmYcfD, respectively. b, Residue numbering is according to RmYcfD, with the EcYcfD numbering shown in brackets. Note that all of the directly identified substrate-binding residues are strictly conserved between EcYcfD and RmYcfD. However, some residues, particularly those located on the Î²IVâ€“Î²V insert including Aspâ€‰118, Tyrâ€‰137 and Argâ€‰212 in RmYcfD (Aspâ€‰110, Tyrâ€‰129 and Argâ€‰203 in EcYcfD), are observed in different conformations, suggesting potential roles for these residues in catalysis. c, d, Predicted binding mode of L16 (yellow) to EcYcfD (green). A model complex of EcYcfD with Mn(II), NOG and L16 (residues Proâ€‰77â€“Lysâ€‰84) was generated using EcYcfD-SeMet as the template and by comparison with RmYcfDâ€“L16 and MINA53â€“RPL27A(32â€“50) structures. d, Surface representations of the EcYcfDâ€“Mnâ€“NOGâ€“L16(77â€“84) complex, predicting key hydrogen-bond/polar interactions (dotted lines) with L16. The hydroxylated L16 Argâ€‰81 is predicted to bind in a pocket defined by the Tyrâ€‰129 and Metâ€‰112 sidechains, which probably form Ï€â€“cation and hydrophobic interactions with the L16 Argâ€‰81 side chain, as observed in the RmYcfDâ€“L16 crystal structure. The Argâ€‰81 guanidino group is predicted to make electrostatic interactions with the EcYcfD Aspâ€‰110 carboxylate and hydrogen bonds to EcYcfD Serâ€‰199. EcYcfD residues Aspâ€‰110, Metâ€‰112, Tyrâ€‰129 and Serâ€‰199 were substituted to test the predicted mode of binding; the assay results are given in Extended Data Fig. 6c.


Extended Data Figure 9 Comparison of active-site chemistry of ROXs and related enzymes.
The figure compares active-site chemistry in representative 2OG-dependent oxygenases and directionality of the peptide substrate binding through the active site. Red/blue arrows indicate hydroxylation/demethylation sites. The active-site metals (Fe/Fe surrogates, Mn or Ni) are in colour-coded spheres.


Extended Data Figure 10 Phylogenetic relationships of human JmjC 2OG-dependent oxygenases.
The figure shows a parsimony tree constructed using Archaeopteryx v.0.9812 (ref. 58) from ClustalW59 aligned protein sequences of human JmjC-containing 2OG-dependent oxygenases showing that distinct branches of JmjC-containing oxygenases exist for hydroxylases (red), demethylases/hydroxylases (light green) and demethylases (blue).
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