Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical detection of radio waves through a nanomechanical transducer

Subjects

Abstract

Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would enable their transmission through optical fibres instead of through copper wires, drastically reducing losses, and would give access to the set of established quantum optical techniques that are routinely used in quantum-limited signal detection. Research in cavity optomechanics1,2 has shown that nanomechanical oscillators can couple strongly to either microwave3,4,5 or optical fields6,7. Here we demonstrate a room-temperature optoelectromechanical transducer with both these functionalities, following a recent proposal8 using a high-quality nanomembrane. A voltage bias of less than 10 V is sufficient to induce strong coupling4,6,7 between the voltage fluctuations in a radio-frequency resonance circuit and the membrane’s displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer—beyond the measured Johnson noise of the resonant circuit—consists of the quantum noise of light and thermal fluctuations of the membrane, dominating the noise floor in potential applications in radio astronomy and nuclear magnetic imaging. Each of these contributions is inferred to be when balanced by choosing an electromechanical cooperativity of with an optical power of 1 mW. The noise temperature of the membrane is divided by the cooperativity. For the highest observed cooperativity of , this leads to a projected noise temperature of 40 mK and a sensitivity limit of . Our approach to all-optical, ultralow-noise detection of classical electronic signals sets the stage for coherent up-conversion of low-frequency quantum signals to the optical domain8,9,10,11.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optoelectromechanical system.
Figure 2: Mechanically induced transparency.
Figure 3: Strong-coupling regime.
Figure 4: Voltage sensitivity and noise.

References

  1. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    Article  CAS  ADS  Google Scholar 

  2. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Preprint at http://arxiv.org/abs/1303.0733 (2013)

  3. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    Article  ADS  Google Scholar 

  4. Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011)

    Article  CAS  ADS  Google Scholar 

  5. Faust, T., Krenn, P., Manus, S., Kotthaus, J. & Weig, E. Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature. Nature Commun. 3, 728 (2012)

    Article  CAS  ADS  Google Scholar 

  6. Gröblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009)

    Article  ADS  Google Scholar 

  7. Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012)

    Article  CAS  ADS  Google Scholar 

  8. Taylor, J. M., Sørensen, A. S., Marcus, C. M. & Polzik, E. S. Laser cooling and optical detection of excitations in a LC electrical circuit. Phys. Rev. Lett. 107, 273601 (2011)

    Article  CAS  ADS  Google Scholar 

  9. Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys. Conf. Ser. 264, 012025 (2011)

    Article  Google Scholar 

  10. Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon-photon translator. New J. Phys. 13, 013017 (2011)

    Article  ADS  Google Scholar 

  11. Wang, Y.-D. & Clerk, A. A. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)

    Article  ADS  Google Scholar 

  12. Stannigel, K., Rabl, P., Sorensen, A. S., Zoller, P. & Lukin, M. D. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010)

    Article  CAS  ADS  Google Scholar 

  13. Dong, C., Fiore, V., Kuzyk, M. C. & Wang, H. Optomechanical dark mode. Science 338, 1609–1613 (2012)

    Article  CAS  ADS  Google Scholar 

  14. Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013)

    Article  CAS  ADS  Google Scholar 

  15. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nature Phys. 9, 712–716 (2013)

    Article  CAS  ADS  Google Scholar 

  16. Thompson, J. D. et al. Strong dispersive coupling of a high finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)

    Article  CAS  ADS  Google Scholar 

  17. Andrews, R. W. et al. Reversible and efficient conversion between microwave and optical light. Preprint at http://arxiv.org/abs/1310.5276 (2013)

  18. Truitt, P. A., Hertzberg, J. B., Huang, C. C., Ekinci, K. L. & Schwab, K. C. Efficient and sensitive capacitive readout of nanomechanical resonator arrays. Nano Lett. 7, 120–126 (2007)

    Article  CAS  ADS  Google Scholar 

  19. Unterreithmeier, Q. P., Weig, E. M. & Kotthaus, J. P. Universal transduction scheme for nanomechanical systems based on dielectric forces. Nature 458, 1001–1004 (2009)

    Article  CAS  ADS  Google Scholar 

  20. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010)

    Article  CAS  ADS  Google Scholar 

  21. Ilchenko, V. S. et al. K a-band all-resonant photonic microwave receiver. IEEE Photonics Technol. Lett. 20, 1600–1612 (2008)

    Article  ADS  Google Scholar 

  22. Devgan, P. S., Pruessner, M. W., Urick, V. J. & Williams, K. J. Detecting low-power and RF signals and using a multimode optoelectronic and oscillator and integrated optical filter. IEEE Photonics Technol. Lett. 22, 152–154 (2010)

    Article  ADS  Google Scholar 

  23. Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys. 5, 909–914 (2009)

    Article  CAS  ADS  Google Scholar 

  24. Horowitz, P. & Hill, W. The Art of Electronics 2nd edn, 428–454 (Cambridge Univ. Press, 1989)

    Google Scholar 

  25. Jensen, K., Weldon, J., Garcia, H. & Zettl, A. Nanotube radio. Nano Lett. 7, 3508–3511 (2007)

    Article  CAS  ADS  Google Scholar 

  26. Massel, F. et al. Microwave amplification with nanomechanical resonators. Nature 480, 351–354 (2011)

    Article  CAS  ADS  Google Scholar 

  27. Kraus, J. D. Radio Astronomy (McGraw, 1966)

    Google Scholar 

  28. Kovacs, H., Moskau, D. & Spraul, M. Cryogenically cooled probes—a leap in NMR technology. Prog. Nucl. Magn. Reson. Spectrosc. 46, 131–155 (2005)

    Article  CAS  Google Scholar 

  29. Resmer, F., Seton, H. C. & Hutchison, J. M. Cryogenic receive coil and low noise preamplifier for MRI at 0.01 T. J. Magn. Reson. 203, 57–65 (2010)

    Article  CAS  ADS  Google Scholar 

  30. Yu, P.-L., Purdy, T. P. & Regal, C. A. Control of material damping in high-Q membrane microresonators. Phys. Rev. Lett. 108, 083603 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the DARPA project QUASAR, the European Union Seventh Framework Program through SIQS (grant no. 600645) and iQUOEMS (grant no. 323924), and the ERC grants QIOS (grant no. 306576) and INTERFACE (grant no. 291038). We would like to thank J. H. Müller for valuable discussions, A. Barg and A. Næsby for assistance with the interferometer, and L. Jørgensen for cleanroom support.

Author information

Authors and Affiliations

Authors

Contributions

T.B., A. Simonsen, S.S., K.U. and A. Schliesser performed the experiments and analysed the data. L.G.V. and S.S. designed and fabricated the membrane and the capacitor. J.A. designed the electronic readout circuit. J.M.T., K.U., A. Sørensen, A. Schliesser, E.Z. and E.S.P. developed the model. T.B., A. Schliesser and E.S.P. wrote the paper. A. Schliesser coordinated most of the work. E.S.P. conceived and supervised the project. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to A. Schliesser or E. S. Polzik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related audio

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-3, Supplementary Figures 1-9, a definition of symbols and additional references (see contents for details). (PDF 1797 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagci, T., Simonsen, A., Schmid, S. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014). https://doi.org/10.1038/nature13029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13029

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing