Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid remobilization of magmatic crystals kept in cold storage

A Corrigendum to this article was published on 23 April 2014

Abstract

The processes involved in the formation and storage of magma within the Earth’s upper crust are of fundamental importance to volcanology. Many volcanic eruptions, including some of the largest, result from the eruption of components stored for tens to hundreds of thousands of years before eruption1,2,3. Although the physical conditions of magma storage and remobilization are of paramount importance for understanding volcanic processes, they remain relatively poorly known4,5. Eruptions of crystal-rich magma are often suggested to require the mobilization of magma stored at near-solidus conditions6,7,8; however, accumulation of significant eruptible magma volumes has also been argued to require extended storage of magma at higher temperatures7,8,9. What has been lacking in this debate is clear observational evidence linking the thermal (and therefore physical) conditions within a magma reservoir to timescales of storage—that is, thermal histories. Here we present a method of constraining such thermal histories by combining timescales derived from uranium-series disequilibria, crystal sizes and trace-element zoning in crystals. At Mount Hood (Oregon, USA), only a small fraction of the total magma storage duration (at most 12 per cent and probably much less than 1 per cent) has been spent at temperatures above the critical crystallinity (40–50 per cent) at which magma is easily mobilized. Partial data sets for other volcanoes also suggest that similar conditions of magma storage are widespread and therefore that rapid mobilization of magmas stored at near-solidus temperatures is common. Magma storage at low temperatures indicates that, although thermobarometry calculations based on mineral compositions may record the conditions of crystallization, they are unlikely to reflect the conditions of most of the time that the magma is stored. Our results also suggest that largely liquid magma bodies that can be imaged geophysically will be ephemeral features and therefore their detection could indicate imminent eruption.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global compilation of crystal residence ages.
Figure 2: Schematic diagram illustrating our approach to constraining thermal histories.
Figure 3: Results of diffusion and R-MELTS modelling.

Similar content being viewed by others

References

  1. Cooper, K. M. & Reid, M. R. Uranium-series crystal ages. Rev. Mineral. Geochem. 69, 479–544 (2008)

    Google Scholar 

  2. Reid, M. R. How long does it take to supersize an eruption? Elements 4, 23–28 (2008)

    Google Scholar 

  3. Schmitt, A. K. Uranium series accessory crystal dating of magmatic processes. Annu. Rev. Earth Planet. Sci. 39, 321–349 (2011)

    ADS  CAS  Google Scholar 

  4. Burgisser, A. & Bergantz, G. W. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471, 212–215 (2011)

    ADS  CAS  Google Scholar 

  5. Druitt, T. H., Costa, F., Deloule, E., Dungan, M. & Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012)

    ADS  CAS  Google Scholar 

  6. Bachmann, O. & Bergantz, G. W. Rhyolites and their source mushes across tectonic settings. J. Petrol. 49, 2277–2285 (2008)

    ADS  CAS  Google Scholar 

  7. Gelman, S. E., Gutierrez, F. J. & Bachmann, O. On the longevity of large upper crustal silicic magma reservoirs. Geology 41, 759–762 (2013)

    ADS  Google Scholar 

  8. Huber, C., Bachmann, O. & Dufek, J. Crystal-poor versus crystal-rich ignimbrites: a competition between stirring and reactivation. Geology 40, 115–118 (2012)

    ADS  CAS  Google Scholar 

  9. Annen, C., Pichavant, M., Bachmann, O. & Burgisser, A. Conditions for the growth of a long-lived shallow crustal magma chamber below Mount Pelee volcano (Martinique, Lesser Antilles Arc). J. Geophys. Res. 113, B07209, http://dx.doi.org/10.1029/2007JB005049 (2008)

    ADS  Google Scholar 

  10. Annen, C. From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284, 409–416 (2009)

    ADS  CAS  Google Scholar 

  11. Bachmann, O., Miller, C. F. & de Silva, S. L. The volcanic-plutonic connection as a stage for understanding crustal magmatism. J. Volcanol. Geotherm. Res. 167, 1–23 (2007)

    ADS  CAS  Google Scholar 

  12. Davis, J. W., Coleman, D. S., Gracely, J. T., Gaschnig, R. & Stearns, M. Magma accumulation rates and thermal histories of plutons of the Sierra Nevada batholith, CA. Contrib. Mineral. Petrol. 163, 449–465 (2012)

    ADS  CAS  Google Scholar 

  13. Karlstrom, L., Rudolph, M. L. & Manga, M. Caldera size modulated by the yield stress within a crystal-rich magma reservoir. Nature Geosci. 5, 402–405 (2012)

    ADS  CAS  Google Scholar 

  14. Cooper, K. M. & Reid, M. R. Re-examination of crystal ages in recent Mount St. Helens lavas: implications for magma reservoir processes. Earth Planet. Sci. Lett. 213, 149–167 (2003)

    ADS  CAS  Google Scholar 

  15. Costa, F., Dohmen, R. & Chakraborty, S. Time scales of magmatic processes from modeling the zoning patterns of crystals. Rev. Mineral. Geochem. 69, 545–594 (2008)

    CAS  Google Scholar 

  16. Marsh, B. D. On the interpretation of crystal size distributions in magmatic systems. J. Petrol. 39, 553–599 (1998)

    ADS  CAS  Google Scholar 

  17. Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol. 53, 875–890 (2012)

    ADS  CAS  Google Scholar 

  18. Scott, W. E. et al. Geologic History of Mount Hood Volcano, Oregon: A Field Trip Guidebook 1–38 (USGS Open File Report 97-263, 1997)

  19. Kent, A. J. R., Darr, C., Koleszar, A. M., Salisbury, M. J. & Cooper, K. M. Preferential eruption of andesitic magmas through recharge filtering. Nature Geosci. 3, 631–636 (2010)

    ADS  CAS  Google Scholar 

  20. Koleszar, A. M. Control on Eruption Style and Magma Compositions at Mount Hood, Oregon. PhD thesis, Oregon State Univ. (2011)

  21. Eppich, G. R., Cooper, K. M., Kent, A. J. R. & Koleszar, A. Constraints on crystal storage timescales in mixed magmas: uranium-series disequilibria in plagioclase from Holocene magmas at Mount Hood, Oregon. Earth Planet. Sci. Lett. 317, 317–318 (2012)

    ADS  Google Scholar 

  22. Koleszar, A. M., Kent, A. J. R., Wallace, P. J. & Scott, W. E. Controls on long-term low explosivity at andesitic arc volcanoes: insights from Mount Hood, Oregon. J. Volcanol. Geotherm. Res. 219–220, 1–14 (2012)

    ADS  Google Scholar 

  23. Armienti, P. Decryption of igneous rock textures: crystal size distribution tools. Rev. Mineral. Geochem. 69, 623–649 (2008)

    CAS  Google Scholar 

  24. Cashman, K. V. Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib. Mineral. Petrol. 113, 126–142 (1993)

    ADS  CAS  Google Scholar 

  25. Larsen, J. F. Experimental study of plagioclase rim growth around anorthite seed crystals in rhyodacitic melt. Am. Mineral. 90, 417–427 (2005)

    ADS  CAS  Google Scholar 

  26. Pupier, E., Duchene, S. & Toplis, M. J. Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contrib. Mineral. Petrol. 155, 555–570 (2008)

    ADS  CAS  Google Scholar 

  27. Ruprecht, P., Bergantz, G. W. & Dufek, J. Modeling of gas-driven magmatic overturn: Tracking of phenocryst dispersal and gathering during magma mixing. Geochem. Geophys. Geosyst. 9, Q07017, http://dx.doi.org/10.1029/2008GC002022 (2008)

    ADS  Google Scholar 

  28. Rubin, K. H., van der Zander, I., Smith, M. C. & Bergmanis, E. C. Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria. Nature 437, 534–538 (2005)

    ADS  CAS  Google Scholar 

  29. Ruprecht, P. & Plank, T. Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500, 68–72 (2013)

    ADS  CAS  Google Scholar 

  30. Costa, F., Chakraborty, S. & Dohmen, R. Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochim. Cosmochim. Acta 67, 2189–2200 (2003)

    ADS  CAS  Google Scholar 

  31. Black, S., Macdonald, R., Barreiro, B., Dunkley, P. N. & Smith, M. Open system alkaline magmatism in northern Kenya: evidence from U-series disequilibria and radiogenic isotopes. Contrib. Mineral. Petrol. 131, 364–378 (1998)

    ADS  CAS  Google Scholar 

  32. Black, S., Macdonald, R., DeVivo, B., Kilburn, C. R. J. & Rolandi, G. U-series disequilibria in young (A.D. 1944) Vesuvius rocks: preliminary implications for magma residence times and volatile addition. J. Volcanol. Geotherm. Res. 82, 97–111 (1998)

    ADS  CAS  Google Scholar 

  33. Black, S., Macdonald, R. & Kelly, M. R. Crustal origin for peralkaline rhyolites from Kenya: Evidence from U-series disequilibria and Th-isotopes. J. Petrol. 38, 277–297 (1997)

    ADS  CAS  Google Scholar 

  34. Bourdon, B., Worner, G. & Zindler, A. U-series evidence for crustal involvement and magma residence times in the petrogenesis of Parinacota volcano, Chile. Contrib. Mineral. Petrol. 139, 458–469 (2000)

    ADS  CAS  Google Scholar 

  35. Bourdon, B., Zindler, A. & Worner, G. Evolution of the Laacher See magma chamber: Evidence from SIMS and TIMS measurements of U-Th disequilibria in minerals and glasses. Earth Planet. Sci. Lett. 126, 75–90 (1994)

    ADS  CAS  Google Scholar 

  36. Charlier, B. L. A. et al. Crystallization ages in coeval silicic magma bodies: 238U-230Th disequilibrium evidence from the Rotoiti and Earthquake Flat eruption deposits, Taupo Volcanic Zone, New Zealand. Earth Planet. Sci. Lett. 206, 441–457 (2003)

    ADS  CAS  Google Scholar 

  37. Cooper, K. M. & Donnelly, C. T. in A Volcano Rekindled: The First Year of Renewed Eruption at Mount St. Helens, 2004–2006 (eds Sherrod, D. R., Scott, W. E. & Stauffer, P. H. ) 827–846 (US Geological Survey Professional Paper 1750, 2008)

    Google Scholar 

  38. Cooper, K. M., Reid, M. R., Murrell, M. T. & Clague, D. A. Crystal and magma residence at Kilauea Volcano, Hawaii: 230Th-226Ra dating of the 1955 east rift eruption. Earth Planet. Sci. Lett. 184, 703–718 (2001)

    ADS  CAS  Google Scholar 

  39. Heath, E., Turner, S. P., Macdonald, R., Hawkesworth, C. J. & van Calsteren, P. Long magma residence times at an island arc volcano (Soufriere, St. Vincent) in the Lesser Antilles: evidence from 238U-230Th isochron dating. Earth Planet. Sci. Lett. 160, 49–63 (1998)

    ADS  CAS  Google Scholar 

  40. Heumann, A. & Davies, G. R. U-Th disequilibrium and Rb-Sr age constraints on the magmatic evolution of peralkaline rhyolites from Kenya. J. Petrol. 43, 557–577 (2002)

    ADS  CAS  Google Scholar 

  41. Jicha, B. R. et al. Deciphering crust vs. mantle inputs and the timescales of magma genesis at Mount Adams using 238U-230Th disequilibria and Os isotopes. Earth Planet. Sci. Lett. 277, 38–49 (2009)

    ADS  CAS  Google Scholar 

  42. Jicha, B. R., Singer, B. S., Beard, B. L. & Johnson, C. M. Contrasting timescales of crystallization and magma storage beneath the Aleutian Island arc. Earth Planet. Sci. Lett. 236, 195–210 (2005)

    ADS  CAS  Google Scholar 

  43. Jicha, B. R. et al. Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue–Cordón Caulle, Southern Volcanic Zone, Chile. Earth Planet. Sci. Lett. 255, 229–242 (2007)

    ADS  CAS  Google Scholar 

  44. Reagan, M. K., Volpe, A. M. & Cashman, K. V. 238U- and 232Th-series chronology of phonolite fractionation at Mount Erebus, Antarctica. Geochim. Cosmochim. Acta 56, 1401–1407 (1992)

    ADS  CAS  Google Scholar 

  45. Rogers, N. W., Evans, P. J., Blake, S., Scott, S. C. & Hawkesworth, C. J. Rates and timescales of fractional crystallization from U-238-Th-230-Ra-226 disequilibria in trachyte lavas from Longonot volcano, Kenya. J. Petrol. 45, 1747–1776 (2004)

    ADS  CAS  Google Scholar 

  46. Ruprecht, P. & Cooper, K. M. Integrating the uranium-series and elemental diffusion geochronometers in mixed magmas from Volcan Quizapu, Central Chile. J. Petrol. 53, 841–871 (2012)

    ADS  CAS  Google Scholar 

  47. Sims, K. W. W. et al. Determining eruption ages and erosion rates of Quaternary basaltic volcanism from combined U-series disequilibria and cosmogenic exposure ages. Geology 35, 471–474 (2007)

    ADS  CAS  Google Scholar 

  48. Stelten, M. E. & Cooper, K. M. Constraints on the nature of the subvolcanic reservoir at South Sister volcano, Oregon from U-series dating combined with sub-crystal trace-element analysis of plagioclase and zircon. Earth Planet. Sci. Lett. 313–314, 1–11 (2012)

    ADS  Google Scholar 

  49. Tepley, F. J., III, Lundstrom, C. C., Gill, J. B. & Williams, R. W. U-Th-Ra disequilibria and the time scale of fluid transfer and andesite differentiation at Arenal volcano, Costa Rica (1968-2003). J. Volcanol. Geotherm. Res. 157, 147–165 (2006)

    ADS  CAS  Google Scholar 

  50. Toothill, J. et al. A complex petrogenesis for an arc magmatic suite, St Kitts, Lesser Antilles. J. Petrol. 48, 3–42 (2007)

    ADS  CAS  Google Scholar 

  51. Touboul, M., Bourdon, B., Villemant, B., Boudon, G. & Joron, J. L. U-238-Th-230-Ra-226 disequilibria in andesitic lavas of the last magmatic eruption of Guadeloupe Soufriere, French Antilles: processes and timescales of magma differentiation. Chem. Geol. 246, 181–206 (2007)

    ADS  CAS  Google Scholar 

  52. Turner, S. et al. Rates and processes of potassic magma evolution beneath Sangeang Api Volcano, East Sunda Arc, Indonesia. J. Petrol. 44, 491–515 (2003)

    ADS  CAS  Google Scholar 

  53. Turner, S., George, R., Jerram, D. A., Carpenter, N. & Hawkesworth, C. Case studies of plagioclase growth and residence times in island arc lavas from Tonga and the Lesser Antilles, and a model to reconcile discordant age information. Earth Planet. Sci. Lett. 214, 279–294 (2003)

    ADS  CAS  Google Scholar 

  54. Volpe, A. M. 238U-230Th-226Ra disequilibrium in young Mt. Shasta andesites and dacites. J. Volcanol. Geotherm. Res. 53, 227–238 (1992)

    ADS  CAS  Google Scholar 

  55. Volpe, A. M. & Hammond, P. E. 238U-230Th-226Ra disequilibria in young Mount St. Helens rocks: time constraint for magma formation and crystallization. Earth Planet. Sci. Lett. 107, 475–486 (1991)

    ADS  CAS  Google Scholar 

  56. Zellmer, G., Turner, S. & Hawkesworth, C. Timescales of destructive plate margin magmatism: new insights from Santorini, Aegean volcanic arc. Earth Planet. Sci. Lett. 174, 265–281 (2000)

    ADS  CAS  Google Scholar 

  57. Zellmer, G. F., Rubin, K. H., Gronvold, K. & Jurado-Chichay, Z. On the recent bimodal magmatic processes and their rates in the Torfajokull-Veidivotn area, Iceland. Earth Planet. Sci. Lett. 269, 388–398 (2008)

    ADS  Google Scholar 

  58. Higgins, M. D. Magma dynamics beneath Kameni volcano, Thera, Greece, as revealed by crystal size and shape measurements. J. Volcanol. Geotherm. Res. 70, 37–48 (1996)

    ADS  CAS  Google Scholar 

  59. Higgins, M. D. Crystal size distributions and other quantitative textural measurements in lavas and tuff from Egmont volcano (Mt. Taranaki), New Zealand. Bull. Volcanol. 58, 194–204 (1996)

    ADS  Google Scholar 

  60. Morgan, D. J. et al. Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet. Sci. Lett. 222, 933–946 (2004)

    ADS  CAS  Google Scholar 

  61. Morrissey, M. M. Long-period seismicity at Redoubt Volcano, Alaska, 1989–1990 related to magma degassing. J. Volcanol. Geotherm. Res. 75, 321–335 (1997)

    ADS  CAS  Google Scholar 

  62. Muir, D. D., Blundy, J. D. & Rust, A. C. Multiphase petrography of volcanic rocks using element maps: a method applied to Mount St. Helens, 1980-2005. Bull. Volcanol. 74, 1101–1120 (2012)

    ADS  Google Scholar 

  63. Zellmer, G. F., Blake, S., Vance, D., Hawkesworth, C. & Turner, S. Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St. Vincent) determined by Sr diffusion systematics. Contrib. Mineral. Petrol. 136, 345–357 (1999)

    ADS  CAS  Google Scholar 

  64. Zellmer, G. F., Sparks, R. S. J., Hawkesworth, C. J. & Wiedenbeck, M. Magma emplacement and remobilization timescales beneath Montserrat: insights from Sr and Ba zonation in plagioclase phenocrysts. J. Petrol. 44, 1413–1431 (2003)

    ADS  Google Scholar 

  65. Van Orman, J. A., Grove, T. L. & Shimizu, N. Rare earth element diffusion in diopside: influence of temperature, pressure and ionic radius, and an elastic model for diffusion in silicates. Contrib. Mineral. Petrol. 141, 687–703 (2001)

    ADS  CAS  Google Scholar 

  66. Saal, A. E. & Van Orman, J. A. The Ra-226 enrichment in oceanic basalts: evidence for melt-cumulate diffusive interaction processes within the oceanic lithosphere. Geochem. Geophys. Geosyst. 5, Q02008, http://dx.doi.org/10.1029/2003GC000620 (2004)

    ADS  Google Scholar 

  67. Van Orman, J. A., Saal, A. E., Bourdon, B. & Hauri, E. H. Diffusive fractionation of U-series radionuclides during mantle melting and shallow-level melt-cumulate interaction. Geochim. Cosmochim. Acta 70, 4797–4812 (2006)

    ADS  CAS  Google Scholar 

  68. Cherniak, D. J. Ba diffusion in feldspar. Geochim. Cosmochim. Acta 66, 1641–1650 (2002)

    ADS  CAS  Google Scholar 

  69. Giordano, D., Russell, J. K. & Dingwell, D. B. Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271, 123–134 (2008)

    ADS  CAS  Google Scholar 

  70. Scaillet, B., Holtz, F. & Pichavant, M. Phase equilibrium constraints on the viscosity of silicic magmas 1. Volcanic-plutonic comparison. J. Geophys. Res. 103, 27257–27266 (1998)

    ADS  CAS  Google Scholar 

  71. Stewart, M. L. & Fowler, A. D. The nature and occurrence of discrete zoning in plagioclase from recently erupted andesitic volcanic rocks, Montserrat. J. Volcanol. Geotherm. Res. 106, 243–253 (2001)

    ADS  CAS  Google Scholar 

  72. Huber, C., Bachmann, O. & Manga, M. Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet. Sci. Lett. 283, 38–47 (2009)

    ADS  CAS  Google Scholar 

  73. Hammer, J. E. Experimental studies of the kinetics and energetics of magma crystallization. Rev. Mineral. Geochem. 69, 9–59 (2008)

    CAS  Google Scholar 

  74. Darr, C. Magma Chamber Processes over the past 475,000 years at Mount Hood, Oregon: Insights from Crystal Zoning and Crystal Size Distribution Studies MS thesis, Oregon State Univ. (2006)

  75. Salisbury, M. J., Bohrson, W. A., Clynne, M. A., Ramos, F. C. & Hoskin, P. Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA. J. Petrol. 49, 1755–1780 (2008)

    ADS  CAS  Google Scholar 

  76. Marsh, B. D. Crystallization of silicate magmas deciphered using crystal size distributions. J. Am. Ceram. Soc. 90, 746–757 (2007)

    CAS  Google Scholar 

  77. Brugger, C. R. & Hammer, J. E. Crystal size distribution analysis of plagioclase in experimentally decompressed hydrous rhyodacite magma. Earth Planet. Sci. Lett. 300, 246–254 (2010)

    ADS  CAS  Google Scholar 

  78. Shea, T. & Hammer, J. E. Kinetics of cooling- and decompression-induced crystallization in hydrous mafic-intermediate magmas. J. Volcanol. Geotherm. Res. 260, 127–145 (2013)

    ADS  CAS  Google Scholar 

  79. Cashman, K. V. Groundmass crystallization of Mount St. Helens dacite, 1980-1986: a tool for interpreting shallow magmatic processes. Contrib. Mineral. Petrol. 109, 431–449 (1992)

    ADS  CAS  Google Scholar 

  80. Kent, A. J. R. et al. Vapor transport prior to the October 2004 eruption of Mount St. Helens, Washington: insight from Li and 210Pb systematics. Geology 35, 231–234 (2007)

    ADS  CAS  Google Scholar 

  81. Loewen, M. W. & Kent, A. J. R. Sources of elemental fractionation and uncertainty during the analysis of semi-volatile metals in silicate glasses using LA-ICP-MS. J. Anal. At. Spectrom. 27, 1502–1508 (2012)

    CAS  Google Scholar 

  82. Triebold, S., Kronz, A. & Worner, G. Anorthite-calibrated backscattered electron profiles, trace elements, and growth textures in feldspars from the Teide-Pico Viejo volcanic complex (Tenerife). J. Volcanol. Geotherm. Res. 154, 117–130 (2006)

    ADS  CAS  Google Scholar 

  83. Kent, A. J. R., Rowe, M. C., Pallister, J. & Thornber, C. R. in A Volcano Rekindled: the Renewed Eruption of Mount St. Helens, 2004-2006 (eds Sherrod, D. R., Scott, W. E. & Stauffer, P. H. ) 809–826 (US Geological Survey Prof. Pap. 1750, 2008)

    Google Scholar 

  84. Giletti, B. J. & Casserly, J. E. D. Strontium diffusion kinetics in plagioclase feldspars. Geochim. Cosmochim. Acta 58, 3785–3793 (1994)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the US NSF (EAR-0838389 to KMC; EAR-0838421 to AJRK). We thank W. Bohrson for assistance with R-MELTS and measurement of CSD. F. Costa also provided assistance with diffusion modelling. We thank T. Plank for comments that improved the clarity and content of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors jointly conceived the project, obtained funding, and developed the interpretations presented in the manuscript. K.M.C. was primarily responsible for the U-series age compilation and interpretations, and A.J.R.K. was primarily responsible for the CSD and diffusion modelling. K.M.C. took the lead on writing the manuscript, with substantial input by A.J.R.K.

Corresponding author

Correspondence to Kari M. Cooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Effects of multi-stage crystallization on U-series apparent crystal ages.

a, Results of a model calculation illustrating effects of multiple stages of crystallization on 238U–230Th (orange) and 230Th–226Ra (blue) apparent crystal ages. The model simulates multiple pulses of crystal growth at 10,000-year intervals, with ageing and radioactive decay occurring between the episodes. The model assumes that each increment of crystallization adds the same volume of new growth, and that each increment of new growth has the same initial concentrations of U, Th and Ra. The diagram shows the model time versus apparent age of the bulk crystal population. We note that only the first part of the model simulation, after a single pulse of crystallization, shows concordant apparent ages for the 238U–230Th and 230Th–226Ra parent–daughter pairs. b, Diagram modified from Cooper and Reid37, showing apparent 238U–230Th and 230Th–226Ra ages calculated for a mixed crystal population resulting from two crystallization episodes: one zero-age population and one older population (assuming constant U, Th and Ra in each crystallization episode). The apparent ages given by each parent–daughter pair and the magnitude of the discrepancy between apparent ages given by the two parent–daughter pairs are a function of the proportion of old and young crystals in the mixed population (dashed grey lines; numbers above lines indicate the percentage of old population) and the age of the old population (blue curves; numbers along curves indicate age in thousands of years of the old population).

Extended Data Figure 2 Measured anorthite mole fraction and Sr concentration in profiles across selected plagioclase crystals from sample MH-09-05.

Profiles representing 1,000 years residence at 750 °C (grey dashed lines), based on the R-MELTS estimate of initial Sr distribution are also shown. See Methods for more details and the source data table for this figure for measured data.

Extended Data Figure 3 Measured anorthite mole fraction and Sr concentration in profiles across selected plagioclase crystals from sample MH-09-11.

Profiles representing 1,000 years residence at 750 °C (grey dashed lines), based on the R-MELTS estimate of initial Sr distribution are also shown. Note that profile MH-09-11-1-9-tr1 has anorthite mole fractions that are too high to allow us to use the R-MELTS method to estimate Sr contents. See Methods for more details and the source data table for this figure for measured data.

Extended Data Figure 4 Backscattered electron images of plagioclase crystals analysed in this study.

Locations of measured profiles are marked with white lines marked ‘tr’ (for ‘traverse’).

Extended Data Figure 5 Sr versus anorthite mole fraction for plagioclase crystals analysed in this study.

Red lines indicate linear regression lines with correlation coefficients (r) indicated. See Methods for more explanation.

Extended Data Figure 6 Observed, R-MELTS-modelled, and equilibrium correlations of measured anorthite versus Sr, and example finite-difference results.

a, Measured anorthite versus Sr for all plagioclase from this study. The best-fitting linear regression line for all data are also shown (thin line with short dashes) as well as an example (thicker line with long dashes) of the equilibrium relation between Sr and anorthite mole fraction calculated for a melt containing 200 µg g−1 Sr at 750 °C. The thick dashed grey line shows Sr content predicted by R-MELTS modelling of the liquid line of descent at 200 MPa, from an initial liquid containing 350 µg g−1 Sr. b, Representative results of finite difference models for sample MH-09-11-1-2-tr1, showing the change in correlation coefficient (r) for Sr versus anorthite mole fraction at temperatures between 700 °C and 950 °C for residence times of 1 to 10,000 years. Also shown is the dashed black line representing the observed r value (rmeasured = 0.62) for Sr versus anorthite for this crystal. Thin grey lines along the 750 °C curve represent the results from evaluation of uncertainties for this curve following the procedure outlined in the Methods. Note that the straight dashed grey lines joining each point (representing calculations for 1, 10, 50, 100, 500, 1,000, 5,000 and 10,000 years) are to aid the viewer but do not imply that the curve joining adjacent points is linear in log-linear space.

Extended Data Figure 7 Example of finite difference modelling of diffusion for crystal traverse MH-09-11-1-1-tr2.

a, Example from crystal MH-09-11-1-1-tr2 of the slope m and correlation r for the best-fitting lines between anorthite and Sr from initial, measured and equilibrium values. Also shown are symbols and best-fitting lines for calculated residence times (at 750 °C) of 100, 1,000 and 10,000 years. b, Measured, initial and equilibrium profile for the same plagioclase crystal, also showing lines representing 1,000 and 10,000 years residence at 750 °C. All calculations were done using R-MELTS estimates of the initial Sr distribution.

Extended Data Figure 8 Crystal residence ages for the Mount Hood silicic plagioclase population calculated as a function of crystal growth rate.

Shown is the total crystal growth duration to produce the maximum observed crystal size (3 mm; green line) and the mean crystal residence time calculated based on CSD slopes (blue lines). Assuming plagioclase growth rates of 10−8 to 10−10 cm s−1 results in growth durations or mean residence times of months to centuries; see Methods for further discussion of growth rates. The percentage of the total time represented by these residence ages is calculated compared to the minimum age of the old cores (21,000 years) and is shown on the right vertical axis.

Extended Data Table 1 Maximum residence times (in years) estimated from Sr diffusion in plagioclase
Extended Data Table 2 Summary of CSD slopes, intercepts and calculated residence ages for populations 1 and 2 plagioclase from Mount Hood lavas

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, K., Kent, A. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014). https://doi.org/10.1038/nature12991

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12991

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing