Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1

Subjects

Abstract

There are two proposed explanations for ultraluminous X-ray sources1,2 (ULXs) with luminosities in excess of 1039 erg s−1. They could be intermediate-mass black holes (more than 100–1,000 solar masses, ) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks3,4,5. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates2,6. On its discovery, M 101 ULX-14,7 had a luminosity of 3 × 1039 erg s−1 and a supersoft thermal disk spectrum with an exceptionally low temperature—uncomplicated by photons energized by a corona of hot electrons—more consistent with the expected appearance of an accreting intermediate-mass black hole3,4. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion8 that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5, and more probably a mass of 20−30, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes9,10,11. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The secondary of M 101 ULX-1 is confirmed to be a Wolf-Rayet star.
Figure 2: An orbital period of 8.2 days is revealed by radial velocity measurements taken over three months for M 101 ULX-1.
Figure 3: The prototype ultraluminous supersoft X-ray source M 101 ULX-1 exhibits distinct spectral characteristics.

Similar content being viewed by others

References

  1. Fabbiano, G. The hunt for intermediate-mass black holes. Science 307, 533–534 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Gladstone, J. The sub-classes of ultraluminous X-ray sources. Preprint at http://arXiv.org/abs/1306.6886 (2013)

  3. Miller, J. et al. A comparison of intermediate mass black hole candidate ultraluminous X-ray sources and stellar mass black holes. Astrophys. J. 614, L117–L120 (2004)

    Article  ADS  Google Scholar 

  4. Kong, A. K. H., Di Stefano, R. & Yuan, F. Evidence of an intermediate-mass black hole: Chandra and XMM-Newton observations of the ultraluminous supersoft X-ray source in M101 during its 2004 outburst. Astrophys. J. 617, L49–L52 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Liu, J. F. & Di Stefano, R. An ultraluminous supersoft X-ray source in M81: an intermediate-mass black hole? Astrophys. J. 674, L73–L77 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Gladstone, J. et al. The ultraluminous state. Mon. Not. R. Astron. Soc. 397, 1836–1851 (2009)

    Article  ADS  Google Scholar 

  7. Mukai, K., Still, M., Corbet, R., Kuntz, K. & Barnard, R. The X-ray properties of M101 ULX-1 = CXOKM101 J140332.74+542102. Astrophys. J. 634, 1085–1092 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Liu, J. F. Multi-epoch multi-wavelength study of an ultraluminous X-ray source in M101: the nature of the secondary. Astrophys. J. 704, 1628–1639 (2009)

    Article  ADS  CAS  Google Scholar 

  9. McClintock, J. & Remillard, R. in Compact Stellar X-ray Sources (eds Lewin, W. & van der Klis, M. ) 157–213 (Cambridge Astrophysics Series No. 39, Cambridge Univ. Press, 2006)

    Book  Google Scholar 

  10. Esin, A. A., McClintock, J. E. & Narayan, R. Advection-dominated accretion and the spectral states of black hole X-ray binaries: application to nova Muscae 1991. Astrophys. J. 489, 865–889 (1997)

    Article  ADS  Google Scholar 

  11. Remillard, R. A. & McClintock, J. E. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 44, 49–92 (2006)

    Article  ADS  Google Scholar 

  12. Rappaport, S., Podsiadlowski & Pfahl, E. Stellar-mass black hole binaries as ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 356, 401–414 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Linden, T. et al. The effect of starburst metallicity on bright X-ray binary formation pathways. Astrophys. J. 725, 1984–1994 (2010)

    Article  ADS  CAS  Google Scholar 

  14. Roberts, T. P. et al. (No) dynamical constraints on the mass of the black hole in two ULXs. Astron. Nachr. 332, 398–401 (2011)

    Article  ADS  CAS  Google Scholar 

  15. Cseh, D., Gris’e, F., Corbel, S. & Kaaret, P. Broad components in optical emission lines from the ultraluminous X-ray source NGC 5408 X-1. Astrophys. J. 728, L5–L9 (2011)

    Article  ADS  Google Scholar 

  16. Hillier, D. J. & Miller, D. L. The treatment of non-LTE line blanketing in spherically expanding outflows. Astrophys. J. 496, 407–427 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Schaerer, D. & Maeder, A. Basic relations between physical parameters of Wolf-Rayet stars. Astron. Astrophys. 263, 129–136 (1992)

    ADS  CAS  Google Scholar 

  18. Crowther, P. A. Physical properties of Wolf-Rayet stars. Annu. Rev. Astron. Astrophys. 45, 177–219 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Prestwich, A. H. et al. The orbital period of the Wolf-Rayet binary IC 10 X-1: dynamic evidence that the compact object is a black hole. Astrophys. J. 669, L21–L24 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Silverman, J. M. & Filippenko, A. V. On IC 10 X-1, the most massive known stellar-mass black hole. Astrophys. J. 678, L17–L20 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Carpano, S. et al. A 33 hour period for the Wolf-Rayet/black hole X-ray binary candidate NGC 300 X-1. Astron. Astrophys. 466, L17–L20 (2007)

    Article  ADS  CAS  Google Scholar 

  22. Crowther, P. A. et al. NGC 300 X-1 is a Wolf-Rayet/black hole binary. Mon. Not. R. Astron. Soc. 403, L41–L45 (2010)

    Article  ADS  Google Scholar 

  23. Steiner, J. F., McClintock, J. E., Remillard, R. A., Narayan, R. & Gou, L. J. Measuring black hole spin via the X-ray continuum-fitting method: beyond the thermal dominant state. Astrophys. J. 701, L83–L86 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Miller, M. C. & Hamilton, D. P. Production of intermediate-mass black holes in globular clusters. Mon. Not. R. Astron. Soc. 330, 232–240 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J. & McMillan, S. L. W. Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428, 724–726 (2004)

    Article  ADS  Google Scholar 

  26. Blecha, L. et al. Close binary interactions of intermediate-mass black holes: possible ultra-luminous X-ray sources? Astrophys. J. 642, 427–437 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Madhusudhan, N. et al. Models of ultraluminous X-ray sources with intermediate-mass black holes. Astrophys. J. 640, 918–922 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Middleton, M. J. et al. Bright radio emission from an ultraluminous stellar-mass microquasar in M31. Nature 493, 187–190 (2013)

    Article  ADS  CAS  Google Scholar 

  29. Barnard, R., Clark, J. S. & Kolb, U. C. NGC 300 X-1 and IC 10 X-1: a new breed of black hole binary? Astron. Astrophys. 488, 697–703 (2008)

    Article  ADS  Google Scholar 

  30. Mohamed, S. & Podsiadlowski Mass transfer in Mira-type binaries. Balt. Astron. 21, 88–96 (2011)

    ADS  Google Scholar 

  31. Freedman, W. et al. Final results from the Hubble Space Telescope key project to measure the Hubble Constant. Astrophys. J. 553, 47–72 (2001)

    Article  ADS  Google Scholar 

  32. Kong, A. K. H., Rupen, M. P., Sjouwerman, L. O. & Di Stefano, R. in Proc. Papers 22nd Texas Symp. Relativistic Astrophys. Stanford (eds Chen, P., Bloom, E., Madejski, G. & Patrosian, V. ) 606–611 (Stanford Univ. Press, 2005)

    Google Scholar 

  33. Bresolin, F. The oxygen abundance in the inner H II regions of M101: implications for the calibration of strong-line metallicity indicators. Astrophys. J. 656, 186–197 (2007)

    Article  ADS  CAS  Google Scholar 

  34. Liu, J. F. Chandra ACIS survey of X-ray point sources in 383 nearby galaxies. I. The source catalog. Astrophys. J. 192 (suppl.). 10–64 (2011)

    Article  ADS  Google Scholar 

  35. Kong, A. K. H. & Di Stefano, R. An unusual spectral state of an ultraluminous very soft X-ray source during outburst. Astrophys. J. 632, L107–L110 (2005)

    Article  ADS  CAS  Google Scholar 

  36. Kuntz, K. D. et al. The optical counterpart of M101 ULX-1. Astrophys. J. 620, L31–L34 (2005)

    Article  ADS  CAS  Google Scholar 

  37. Pettini, M. & Pagel, B. E. J. [OIII]/[NII] as an abundance indicator at high redshift. Mon. Not. R. Astron. Soc. 348, L59–L63 (2004)

    Article  ADS  CAS  Google Scholar 

  38. Osterbrock, D. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (University Science Books, 1989)

    Book  Google Scholar 

  39. Hamann, W. R., Koesterke, L. & Wessolowski, U. Spectra analysis of the Galactic Wolf-Rayet stars — a comprehensive study of the WN class. Astron. Astrophys. 274, 397–414 (1993)

    ADS  CAS  Google Scholar 

  40. Crowther, P. A. & Hadfield, L. J. Reduced Wolf-Rayet line luminosities at low metallicity. Astron. Astrophys. 449, 711–722 (2006)

    Article  ADS  CAS  Google Scholar 

  41. Smith, L. F., Shara, M. M. & Moffat, A. F. J. A three-dimensional classification for WN stars. Mon. Not. R. Astron. Soc. 281, 163–191 (1996)

    Article  ADS  CAS  Google Scholar 

  42. Girardi, L. et al. Theoretical isochrones in several photometric systems. I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO imaging survey filter sets. Astron. Astrophys. 391, 195–212 (2002)

    Article  ADS  Google Scholar 

  43. Frank, J., King, A. & Raine, D. Accretion Power in Astrophysics (Cambridge Univ. Press, 2002)

    Book  Google Scholar 

  44. Illarionov, A. F. & Sunyaev, R. A. Why the number of Galactic X-ray stars is so small? Astron. Astrophys. 39, 185–195 (1975)

    ADS  Google Scholar 

  45. Ergma, E. & Yungelson, L. R. CYG X-3: can the compact object be a black hole? Astron. Astrophys. 333, 151–158 (1998)

    ADS  Google Scholar 

  46. Liu, J. F., Orosz, J. & Bregman, J. N. Dynamical mass constraints on the ultraluminous X-ray source NGC 1313 X-2. Astrophys. J. 745, 89–110 (2012)

    Article  ADS  Google Scholar 

  47. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

  48. Belczynski, K. et al. On the maximum mass of stellar black holes. Astrophys. J. 714, 1217–1226 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. McClintock, R. Di Stefano, Q.-Z. Liu, X.-D. Li, F. Yuan and S.-N. Zhang for discussions. J.-F.L. acknowledges support for this work provided by NASA through the Chandra Fellowship Program (grant PF6-70043), support from the Chinese Academy of Sciences through grant KJCX2-EW-T01 and support by the National Science Foundation of China through grants NSFC-11273028 and NSFC-11333004. The paper is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

Author information

Authors and Affiliations

Authors

Contributions

J.-F.L. and J.N.B. proposed the observations, J.-F.L. and Y.B. reduced the data and carried out the analysis, J.-F.L., J.N.B. and S.J. discussed the results and wrote the paper, and P.C. helped to confirm the properties of the Wolf-Rayet star. All authors commented on the manuscript and contributed to the revision of the manuscript.

Corresponding author

Correspondence to Ji-Feng Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 M 101 ULX-1 as observed in the optical region.

Left, M 101 ULX-1 is located on a spiral arm of the face-on grand-design spiral galaxy M 101, as indicated by the arrow. The colour image of M 101 is composed of GALEX NUV, SDSS g, and 2MASS J images. Right, ULX-1 is identified as a blue object with V = 23.5 mag at the centre of the 1″ circle on the HST image. The colour image is composed of ACS/WFC F435W, F555W and F814W images.

Extended Data Figure 2 Physical properties of the Wolf-Rayet secondary from spectral line modelling.

Distributions of computed Δ2 as a function of stellar masses (a), stellar mass loss rate (b), stellar radii (c) and terminal velocity (d). Here Δ2 = Σi(EW − EWi)2 computes the difference between observed and synthetic equivalent widths EW for six broad helium lines present in the Gemini/GMOS spectrum. We have computed synthetic spectra for a group of 5,000 real stars from the evolution tracks (as shown by the thick stripes in the mass plot and the radius plot) and for another group of ‘fake’ stars with continuous distributions in mass, radius and luminosity. The best model is labelled by a filled pentagon in all panels.

Source data

Extended Data Figure 3 Properties of the Wolf-Rayet/black-hole binary for different black-hole masses.

Shown are the binary separation (solid line), the Roche lobe sizes for the Wolf-Rayet star (dotted) and for the black hole (short dashed), the capture radius for the black hole when using the terminal velocity (dash–dotted) or when using a simplified velocity law v(r) = v(1 − R*/r) (long dashed).

Source data

Extended Data Figure 4 The black-hole accretion rate for different black-hole masses.

The accretion rates are computed adopting the terminal velocity (dotted) and a simplified velocity law v(r) = v(1 − R*/r) (solid). To power the observed average luminosity of 3 × 1038 erg s−1, the black-hole mass must exceed 13 (8) using the terminal velocity (the velocity law) for a Kerr black hole (η = 0.42), and exceed 46 (28) for a Schwarzschild black hole (η = 0.06). The two horizontal dotted lines indicate the accretion rates required for η = 0.06 and η = 0.42, respectively.

Source data

Extended Data Figure 5 Disk temperature structures for M 101 ULX-1.

a, The disk temperature profiles for M 101 ULX-1 (for P = 8.24 days, M* = 19, R* = 10.7, or 100) and NGC300 X-1 (for P = 32.4 h M* = 26, R* = 7.2, ; ref 22). b, The disk temperature at the outer edge for different black-hole mass in M 101 ULX-1. The horizontal line indicates the temperature required for the helium partial ionization zone.

Source data

Extended Data Table 1 Gemini/GMOS spectroscopic observations of M 101 ULX-1
Extended Data Table 2 Properties of emission lines

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JF., Bregman, J., Bai, Y. et al. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1. Nature 503, 500–503 (2013). https://doi.org/10.1038/nature12762

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12762

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing