Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin and age of the earliest Martian crust from meteorite NWA 7533

Abstract

The ancient cratered terrain of the southern highlands of Mars is thought to hold clues to the planet’s early differentiation1,2, but until now no meteoritic regolith breccias have been recovered from Mars. Here we show that the meteorite Northwest Africa (NWA) 7533 (paired with meteorite NWA 70343) is a polymict breccia consisting of a fine-grained interclast matrix containing clasts of igneous-textured rocks and fine-grained clast-laden impact melt rocks. High abundances of meteoritic siderophiles (for example nickel and iridium) found throughout the rock reach a level in the fine-grained portions equivalent to 5 per cent CI chondritic input, which is comparable to the highest levels found in lunar breccias. Furthermore, analyses of three leucocratic monzonite clasts show a correlation between nickel, iridium and magnesium consistent with differentiation from impact melts. Compositionally, all the fine-grained material is alkalic basalt, chemically identical (except for sulphur, chlorine and zinc) to soils from Gusev crater. Thus, we propose that NWA 7533 is a Martian regolith breccia. It contains zircons for which we measured an age of 4,428 ± 25 million years, which were later disturbed 1,712 ± 85 million years ago. This evidence for early crustal differentiation implies that the Martian crust, and its volatile inventory4, formed in about the first 100 million years of Martian history, coeval with earliest crust formation on the Moon5 and the Earth6. In addition, incompatible element abundances in clast-laden impact melt rocks and interclast matrix provide a geochemical estimate of the average thickness of the Martian crust (50 kilometres) comparable to that estimated geophysically2,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Backscattered-electron image of NWA 7533 section 1.
Figure 2: Siderophile-element abundances in NWA 7533.
Figure 3: Gusev rock and soil analyses13 have systematically higher Zn abundances than both Martian meteorites and NWA 7533.
Figure 4: REE patterns for the representative components of NWA 7533 including the fine-grained ICM and CLIMR.
Figure 5: Concordia plot for SHRIMP analysis of five zircon grains from NWA 7533 section 4 defines a discordia line.

Similar content being viewed by others

References

  1. Solomon, S. C. et al. New perspectives on ancient Mars. Science 307, 1214–1220 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Nimmo, F. & Tanaka, K. Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33, 133–161 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Agee, C. B. et al. Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 339, 780–785 (2013)

    Article  ADS  CAS  Google Scholar 

  4. Marty, B. & Marti, K. Signatures of early differentiation of Mars. Earth Planet. Sci. Lett. 196, 251–263 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geosci. 2, 133–136 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons of the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Zuber, M. T. et al. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287, 1788–1793 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Korotev, R. L., Ziegler, R. A., Jolliff, B. L., Irving, A. J. & Bunch, T. E. Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron concentrations. Meteorit. Planet. Sci. 44, 1287–1322 (2009)

    Article  ADS  CAS  Google Scholar 

  9. Warren, P. H., Ulff-Møller, F. & Kallemeyn, G. W. “New” lunar meteorites: impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust. Meteorit. Planet. Sci. 40, 989–1014 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Tuff, J., Wade, J. & Wood, B. J. Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 498, 342–345 (2013)

    Article  ADS  CAS  Google Scholar 

  11. Yen, A. S. et al. An integrated view of the chemistry and mineralogy of Martian soils. Nature 436, 49–54 (2005)

    Article  ADS  CAS  Google Scholar 

  12. McSween, H. Y., Taylor, G. J. & Wyatt, M. B. Elemental composition of the Martian crust. Science 324, 736–739 (2009)

    Article  ADS  CAS  Google Scholar 

  13. Gellert, R. et al. Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report. J. Geophys. Res. 111, E02S05 (2006)

    Article  Google Scholar 

  14. Clark, B. C. et al. Chemical composition of Martian fines. J. Geophys. Res. 87, 10,059–10,067 (1982)

    Article  ADS  CAS  Google Scholar 

  15. Foley, C. N., Economou, T. & Clayton, R. N. Final chemical results from the Mars pathfinder alpha proton X-ray spectrometer. J. Geophys. Res. 108, 8096 (2003)

    Google Scholar 

  16. Di Achille, G. & Hynek, B. A. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nature Geosci. 3, 459–463 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Debaille, V., Brandon, A. D., Yin, Q.-Z. & Jacobsen, B. Coupled 142Nd-143Nd evidence for a protracted magma ocean in Mars. Nature 450, 525–528 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Elkins-Tanton, L. T. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012)

    Article  ADS  CAS  Google Scholar 

  19. Aoudjehane, H. C. et al. Tissint Martian meteorite: a fresh look at the interior, surface, and atmosphere of Mars. Science 338, 785–788 (2012)

    Article  ADS  CAS  Google Scholar 

  20. Stolper, E. M. et al. The petrochemistry of Jake_M: a Martian mugearite. Science 341, 1239463 (2013)

    Article  CAS  Google Scholar 

  21. Taylor, G. J. et al. Variations in K/Th on Mars. J. Geophys. Res. 111, E03S06 (2006)

    Google Scholar 

  22. Jakosky, B. M. & Phillips, R. J. Mars’ volatile and climate history. Nature 412, 237–244 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Brandon, A. D. et al. Evolution of the Martian mantle inferred from the 187Re-187Os isotope and highly siderophile element abundance systematics of shergottite meteorites. Geochim. Cosmochim. Acta 76, 206–235 (2012)

    Article  ADS  CAS  Google Scholar 

  24. Warren, P. H., Kallemeyn, G. W. & Kyte, F. T. Origin of planetary cores: Evidence from highly siderophile elements in martian meteorites. Geochim. Cosmochim. Acta 63, 2105–2122 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Kong, P., Ebihara, M. & Palme, H. Siderophile elements in Martian meteorites and implications for core formation in Mars. Geochim. Cosmochim. Acta 63, 1865–1875 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Norman, M. D., Bennett, V. C. & Ryder, G. Targeting the impactors: siderophile element signatures of lunar impact melts from Serenitatis. Earth Planet. Sci. Lett. 202, 217–228 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Palme, H. et al. New data on lunar samples and achondrites and a comparison of the least fractionated samples from the Earth, the Moon and the Eucrite parent body. Proc. Lunar Sci. Conf. 9, 25–57 (1978)

    ADS  Google Scholar 

  28. Wänke, H. et al. On the chemistry of lunar samples and achondrites: Primary matter in the lunar highlands. A re-evaluation. Proc. Lunar Sci. Conf. 8, 2191–2213 (1977)

    ADS  Google Scholar 

  29. Warren, P. H., Taylor, G. J., Keil, K., Shirley, D. N. & Wasson, J. T. Petrology and chemistry of two “large” granite clasts from the Moon. Earth Planet. Sci. Lett. 64, 175–185 (1983)

    Article  ADS  CAS  Google Scholar 

  30. Rudnick, R. L. & Gao, S. in Treatise on Geochemistry Vol. 3, The Continental Crust (ed. Rudnick, R. L. ) 1–64 (Elsevier-Pergamon, 2003)

    Book  Google Scholar 

  31. Humayun, M., Simon, S. B. & Grossman, L. Tungsten and hafnium distribution in calcium-aluminum inclusions (CAIs) from Allende and Efremovka. Geochim. Cosmochim. Acta 71, 4609–4627 (2007)

    Article  ADS  CAS  Google Scholar 

  32. Gaboardi, M. & Humayun, M. Elemental fractionation during LA-ICP-MS analysis of silicate glasses: implications for matrix-independent standardization. J. Anal. Atomic Spectrom. 24, 1188–1197 (2009)

    Article  CAS  Google Scholar 

  33. Humayun, M. Chondrule cooling rates inferred from diffusive profiles in metal lumps from the Acfer 097 CR2 chondrite. Meteor. Planet. Sci. 47, 1191–1208 (2012)

    Article  ADS  CAS  Google Scholar 

  34. Jochum, K. P. et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanalyt. Res. 35, 397–429 (2011)

    Article  CAS  Google Scholar 

  35. Campbell, A. J., Humayun, M. & Weisberg, M. K. Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford, and Gujba. Geochim. Cosmochim. Acta 66, 647–660 (2002)

    Article  ADS  CAS  Google Scholar 

  36. Walker, R. J. et al. Modeling fractional crystallization of group IVB iron meteorites. Geochim. Cosmochim. Acta 72, 2198–2216 (2008)

    Article  ADS  CAS  Google Scholar 

  37. Humayun, M., Davis, F. A. & Hirschmann, M. M. Major element analysis of natural silicates by laser ablation ICP-MS. J. Anal. Atomic Spectrom. 25, 998–1005 (2010)

    Article  CAS  Google Scholar 

  38. Compston, W., Williams, I. S. & Meyer, C. U–Pb geochronology of zircons from Lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe. J. Geophys. Res. 89, 525–534 (1984)

    Article  CAS  Google Scholar 

  39. Nelson, D. R. Compilation of SHRIMP U-Pb geochronology data, 1996. Geol. Surv. West. Aust. Rec. 1997/2, 1–11 (1997)

    Google Scholar 

  40. Williams, I. S. in Applications of Microanalytical Techniques to Understanding Mineralising Processes (eds McKibben, M. A., Shanks, W. C. & Riley, W. I. ) 1–35 (Rev. Econ. Geol. 7, Society of Economic Geologists, 1998)

    Google Scholar 

  41. Pidgeon, R. T., Furfaro, D., Kennedy, A. K., Nemchin, A. A. & van Bronswjk, W. Calibration of zircon standards for the Curtin SHRIMP. US Geol. Surv. Circ. 1107, 251 (1994)

    Google Scholar 

  42. Wingate, M. T. D. & Compston, W. Crystal orientation effects during ion microprobe U-Pb analysis of baddeleyite. Chem. Geol. 168, 75–97 (2000)

    Article  ADS  CAS  Google Scholar 

  43. Stacey, J. S. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221 (1975)

    Article  ADS  CAS  Google Scholar 

  44. Nemchin, A. A., Pidgeon, R. T., Whitehouse, M. J., Vaughan, J. P. & Meyer, C. SIMS U-Pb study of zircon from Apollo 14 and 17 breccias: implications for the evolution of lunar KREEP. Geochim. Cosmochim. Acta 72, 668–689 (2008)

    Article  ADS  CAS  Google Scholar 

  45. Ludwig, K. R. User’s Manual for Isoplot 3.60: A Geochronological Toolkit for Microsoft Excel. Spec. Publ. 4 (Berkeley Geochronological Center, 2008)

    Google Scholar 

  46. Ludwig, K. R. Squid 2 – A User’s Manual (rev 2.50). Spec. Publ. 4 (Berkeley Geochronology Center, 2009)

    Google Scholar 

Download references

Acknowledgements

We thank L. Labenne for providing samples of NWA 7533 for this study. We thank M. Fialin and F. Couffignal for help with the electron microprobe. We thank the NASA Cosmochemistry Program for support to M.H. (NNX10AI37G) and the Programme National de Planétologie, France, for support to B.Z. M.G. thanks the ARC Centre of Excellence CCFS for funding. We thank H. McSween for comments.

Author information

Authors and Affiliations

Authors

Contributions

M.H., A.N., B.Z. and R.H.H. had the idea behind and directed the research, and wrote the manuscript. M.H. and B.Z. performed laser ablation ICP–MS analyses at Florida State University; A.N., M.G. and A.K. performed the SHRIMP ion probe U–Pb analyses at Curtin University and interpreted the chronology; B.Z. and C.F. prepared polished samples; R.H.H. and B.Z. performed petrological studies; J.-P.L. and S.P. investigated the mineralogy of the sulphide phases and searched for the carriers of platinum-group elements; C.G. provided separated CLIMR clasts; S.P., D.D., J.-P.L. and B.Z. located and imaged zircon and baddeleyite by scanning electron microscopy.

Corresponding author

Correspondence to M. Humayun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary References, Supplementary Figures 1-8 and Supplementary Tables 1-2. (PDF 2909 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humayun, M., Nemchin, A., Zanda, B. et al. Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503, 513–516 (2013). https://doi.org/10.1038/nature12764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12764

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing