Origin and age of the earliest Martian crust from meteorite NWA7533

Journal name:
Date published:
Published online

The ancient cratered terrain of the southern highlands of Mars is thought to hold clues to the planet’s early differentiation1, 2, but until now no meteoritic regolith breccias have been recovered from Mars. Here we show that the meteorite Northwest Africa (NWA)7533 (paired with meteorite NWA70343) is a polymict breccia consisting of a fine-grained interclast matrix containing clasts of igneous-textured rocks and fine-grained clast-laden impact melt rocks. High abundances of meteoritic siderophiles (for example nickel and iridium) found throughout the rock reach a level in the fine-grained portions equivalent to 5 per cent CI chondritic input, which is comparable to the highest levels found in lunar breccias. Furthermore, analyses of three leucocratic monzonite clasts show a correlation between nickel, iridium and magnesium consistent with differentiation from impact melts. Compositionally, all the fine-grained material is alkalic basalt, chemically identical (except for sulphur, chlorine and zinc) to soils from Gusev crater. Thus, we propose that NWA7533 is a Martian regolith breccia. It contains zircons for which we measured an age of 4,428±25 million years, which were later disturbed 1,712±85 million years ago. This evidence for early crustal differentiation implies that the Martian crust, and its volatile inventory4, formed in about the first 100 million years of Martian history, coeval with earliest crust formation on the Moon5 and the Earth6. In addition, incompatible element abundances in clast-laden impact melt rocks and interclast matrix provide a geochemical estimate of the average thickness of the Martian crust (50 kilometres) comparable to that estimated geophysically2, 7.

At a glance


  1. Backscattered-electron image of NWA[thinsp]7533 section[thinsp]1.
    Figure 1: Backscattered-electron image of NWA7533 section1.

    The breccia contains many large bodies of clast-laden impact melt rock (light or medium grey), some outlined with dot–dash lines, in fine-grained interclast crystalline matrix. Solid ellipses show crystal and lithic fragments, close-ups of which (lettered) are shown in Supplementary Information. Pyroxene (pxn; light or medium grey), feldspar (dark grey) and pyroxene–feldspar rock fragments are found in both melt rocks and matrix. Bright grey minerals include chlorapatite and Fe-rich oxides and oxyhydroxides.

  2. Siderophile-element abundances in NWA[thinsp]7533.
    Figure 2: Siderophile-element abundances in NWA7533.

    a, Ni versus Mg, comparing abundances in NWA7533 components with those in Gusev rocks and soils12, 13, other Martian meteorites (SNCs23 and ALH8400124, 25), Apollo 15–17 breccias26, 27, 28 and lunar meteorites8, 9, and a lunar felsite, 14321, c4 (ref. 29). b, Ir versus Mg for the same samples (excluding Gusev rocks and soils, for which Ir data are not available). For literature sources, see above. Some of the in situ analyses from NWA7533 are higher in Ir than any of the lunar breccias, owing to the influence of Ir-rich nuggets.

  3. Gusev rock and soil analyses have systematically higher Zn abundances than both Martian meteorites and NWA[thinsp]7533.
    Figure 3: Gusev rock and soil analyses13 have systematically higher Zn abundances than both Martian meteorites and NWA7533.

    Pyroxene-rich nakhlites and ALH84001 are higher in Zn than are olivine-rich chassignites, but none of the known nakhlites is as Fe-rich as some of the igneous-textured clasts from NWA7533, which extend beyond the SNC field to higher Fe. Together with S and Cl, Zn abundances are systematically enriched in modern soils relative to NWA7533, presumably because of the lack of liquid water on modern Mars.

  4. REE patterns for the representative components of NWA[thinsp]7533 including the fine-grained ICM and CLIMR.
    Figure 4: REE patterns for the representative components of NWA7533 including the fine-grained ICM and CLIMR.

    The previously reported bulk REE analysis of NWA70343 (purple) represents a mixture between the ICM or CLIMR and clasts such as monzonite clastII (green). Earth’s upper continental crust30 (UCC) is shown for comparison. The blue curves depict model results: a 4% partial melt of primitive Martian mantle (PM) and the complementary residue termed the depleted Martian source (DM); a higher degree melt (15%) of the DM source; and Tissint19, a depleted shergottite.

  5. Concordia plot for SHRIMP analysis of five zircon grains from NWA[thinsp]7533 section[thinsp]4 defines a discordia line.
    Figure 5: Concordia plot for SHRIMP analysis of five zircon grains from NWA7533 section4 defines a discordia line.

    Data error ellipses are 2σ. Analyses from three zircons plot on the upper intercept (Z1, Z14, Z15), and the analysis from one grain plots on the lower intercept (Z3). MSWD, mean squared weighted deviation.


  1. Solomon, S. C. et al. New perspectives on ancient Mars. Science 307, 12141220 (2005)
  2. Nimmo, F. & Tanaka, K. Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33, 133161 (2005)
  3. Agee, C. B. et al. Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 339, 780785 (2013)
  4. Marty, B. & Marti, K. Signatures of early differentiation of Mars. Earth Planet. Sci. Lett. 196, 251263 (2002)
  5. Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geosci. 2, 133136 (2009)
  6. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons of the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175178 (2001)
  7. Zuber, M. T. et al. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287, 17881793 (2000)
  8. Korotev, R. L., Ziegler, R. A., Jolliff, B. L., Irving, A. J. & Bunch, T. E. Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron concentrations. Meteorit. Planet. Sci. 44, 12871322 (2009)
  9. Warren, P. H., Ulff-Møller, F. & Kallemeyn, G. W. “New” lunar meteorites: impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust. Meteorit. Planet. Sci. 40, 9891014 (2005)
  10. Tuff, J., Wade, J. & Wood, B. J. Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 498, 342345 (2013)
  11. Yen, A. S. et al. An integrated view of the chemistry and mineralogy of Martian soils. Nature 436, 4954 (2005)
  12. McSween, H. Y., Taylor, G. J. & Wyatt, M. B. Elemental composition of the Martian crust. Science 324, 736739 (2009)
  13. Gellert, R. et al. Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report. J. Geophys. Res. 111, E02S05 (2006)
  14. Clark, B. C. et al. Chemical composition of Martian fines. J. Geophys. Res. 87, 10,05910,067 (1982)
  15. Foley, C. N., Economou, T. & Clayton, R. N. Final chemical results from the Mars pathfinder alpha proton X-ray spectrometer. J. Geophys. Res. 108, 8096 (2003)
  16. Di Achille, G. & Hynek, B. A. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nature Geosci. 3, 459463 (2010)
  17. Debaille, V., Brandon, A. D., Yin, Q.-Z. & Jacobsen, B. Coupled 142Nd-143Nd evidence for a protracted magma ocean in Mars. Nature 450, 525528 (2007)
  18. Elkins-Tanton, L. T. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113139 (2012)
  19. Aoudjehane, H. C. et al. Tissint Martian meteorite: a fresh look at the interior, surface, and atmosphere of Mars. Science 338, 785788 (2012)
  20. Stolper, E. M. et al. The petrochemistry of Jake_M: a Martian mugearite. Science 341, 1239463 (2013)
  21. Taylor, G. J. et al. Variations in K/Th on Mars. J. Geophys. Res. 111, E03S06 (2006)
  22. Jakosky, B. M. & Phillips, R. J. Mars’ volatile and climate history. Nature 412, 237244 (2001)
  23. Brandon, A. D. et al. Evolution of the Martian mantle inferred from the 187Re-187Os isotope and highly siderophile element abundance systematics of shergottite meteorites. Geochim. Cosmochim. Acta 76, 206235 (2012)
  24. Warren, P. H., Kallemeyn, G. W. & Kyte, F. T. Origin of planetary cores: Evidence from highly siderophile elements in martian meteorites. Geochim. Cosmochim. Acta 63, 21052122 (1999)
  25. Kong, P., Ebihara, M. & Palme, H. Siderophile elements in Martian meteorites and implications for core formation in Mars. Geochim. Cosmochim. Acta 63, 18651875 (1999)
  26. Norman, M. D., Bennett, V. C. & Ryder, G. Targeting the impactors: siderophile element signatures of lunar impact melts from Serenitatis. Earth Planet. Sci. Lett. 202, 217228 (2002)
  27. Palme, H. et al. New data on lunar samples and achondrites and a comparison of the least fractionated samples from the Earth, the Moon and the Eucrite parent body. Proc. Lunar Sci. Conf. 9, 2557 (1978)
  28. Wänke, H. et al. On the chemistry of lunar samples and achondrites: Primary matter in the lunar highlands. A re-evaluation. Proc. Lunar Sci. Conf. 8, 21912213 (1977)
  29. Warren, P. H., Taylor, G. J., Keil, K., Shirley, D. N. & Wasson, J. T. Petrology and chemistry of two “large” granite clasts from the Moon. Earth Planet. Sci. Lett. 64, 175185 (1983)
  30. Rudnick, R. L. & Gao, S. in Treatise on Geochemistry Vol. 3, The Continental Crust (ed. Rudnick, R. L.) 164 (Elsevier-Pergamon, 2003)
  31. Humayun, M., Simon, S. B. & Grossman, L. Tungsten and hafnium distribution in calcium-aluminum inclusions (CAIs) from Allende and Efremovka. Geochim. Cosmochim. Acta 71, 46094627 (2007)
  32. Gaboardi, M. & Humayun, M. Elemental fractionation during LA-ICP-MS analysis of silicate glasses: implications for matrix-independent standardization. J. Anal. Atomic Spectrom. 24, 11881197 (2009)
  33. Humayun, M. Chondrule cooling rates inferred from diffusive profiles in metal lumps from the Acfer 097 CR2 chondrite. Meteor. Planet. Sci. 47, 11911208 (2012)
  34. Jochum, K. P. et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanalyt. Res. 35, 397429 (2011)
  35. Campbell, A. J., Humayun, M. & Weisberg, M. K. Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford, and Gujba. Geochim. Cosmochim. Acta 66, 647660 (2002)
  36. Walker, R. J. et al. Modeling fractional crystallization of group IVB iron meteorites. Geochim. Cosmochim. Acta 72, 21982216 (2008)
  37. Humayun, M., Davis, F. A. & Hirschmann, M. M. Major element analysis of natural silicates by laser ablation ICP-MS. J. Anal. Atomic Spectrom. 25, 9981005 (2010)
  38. Compston, W., Williams, I. S. & Meyer, C. U–Pb geochronology of zircons from Lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe. J. Geophys. Res. 89, 525534 (1984)
  39. Nelson, D. R. Compilation of SHRIMP U-Pb geochronology data, 1996. Geol. Surv. West. Aust. Rec. 1997/2, 111 (1997)
  40. Williams, I. S. in Applications of Microanalytical Techniques to Understanding Mineralising Processes (eds McKibben, M. A., Shanks, W. C. & Riley, W. I.) 135 (Rev. Econ. Geol. 7, Society of Economic Geologists, 1998)
  41. Pidgeon, R. T., Furfaro, D., Kennedy, A. K., Nemchin, A. A. & van Bronswjk, W. Calibration of zircon standards for the Curtin SHRIMP. US Geol. Surv. Circ. 1107, 251 (1994)
  42. Wingate, M. T. D. & Compston, W. Crystal orientation effects during ion microprobe U-Pb analysis of baddeleyite. Chem. Geol. 168, 7597 (2000)
  43. Stacey, J. S. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207221 (1975)
  44. Nemchin, A. A., Pidgeon, R. T., Whitehouse, M. J., Vaughan, J. P. & Meyer, C. SIMS U-Pb study of zircon from Apollo 14 and 17 breccias: implications for the evolution of lunar KREEP. Geochim. Cosmochim. Acta 72, 668689 (2008)
  45. Ludwig, K. R. User’s Manual for Isoplot 3.60: A Geochronological Toolkit for Microsoft Excel. Spec. Publ. 4 (Berkeley Geochronological Center, 2008)
  46. Ludwig, K. R. Squid 2 – A User’s Manual (rev 2.50). Spec. Publ. 4 (Berkeley Geochronology Center, 2009)

Download references

Author information


  1. Department of Earth, Ocean and Atmospheric Science, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA

    • M. Humayun
  2. Department of Applied Geology, Curtin University, Perth, Western Australia 6845, Australia

    • A. Nemchin &
    • M. Grange
  3. Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS and Muséum National d’Histoire Naturelle, 75005 Paris, France

    • B. Zanda,
    • R. H. Hewins,
    • C. Fieni &
    • S. Pont
  4. Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey 08854, USA

    • B. Zanda &
    • R. H. Hewins
  5. Department of Applied Physics, Curtin University, Perth, Western Australia 6845, Australia

    • A. Kennedy
  6. Laboratoire de Planétologie et Géodynamique de Nantes, CNRS UMR 6112, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

    • J.-P. Lorand
  7. Institut de Physique du Globe, Sorbonne Paris Cité, University Paris Diderot, CNRS UMR 7154, F-75005 Paris, France

    • C. Göpel
  8. Ecole Normale Supérieure, UMR 8538, 75231 Paris Cedex 5, France

    • D. Deldicque
  9. Present address: Laboratory for Isotope Geology, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden.

    • A. Nemchin


M.H., A.N., B.Z. and R.H.H. had the idea behind and directed the research, and wrote the manuscript. M.H. and B.Z. performed laser ablation ICP–MS analyses at Florida State University; A.N., M.G. and A.K. performed the SHRIMP ion probe U–Pb analyses at Curtin University and interpreted the chronology; B.Z. and C.F. prepared polished samples; R.H.H. and B.Z. performed petrological studies; J.-P.L. and S.P. investigated the mineralogy of the sulphide phases and searched for the carriers of platinum-group elements; C.G. provided separated CLIMR clasts; S.P., D.D., J.-P.L. and B.Z. located and imaged zircon and baddeleyite by scanning electron microscopy.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (2.8 MB)

    This file contains Supplementary Text, Supplementary References, Supplementary Figures 1-8 and Supplementary Tables 1-2.

Additional data