Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

Abstract

Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen1,2,3,4,5,6, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2)7, but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use1, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biomass carbon accumulation and dinitrogen fixation in forests recovering from land use.
Figure 2: Individual species contributions to ecosystem fixation.

Similar content being viewed by others

References

  1. Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007)

    Article  CAS  ADS  Google Scholar 

  2. Zaehle, S. & Dalmonech, D. Carbon–nitrogen interactions on land at global scales: Current understanding in modeling climate biosphere feedbacks. Curr. Opin. Environ. Sustain. 3, 311–320 (2011)

    Article  Google Scholar 

  3. Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W. & Shevliakova, E. Nitrogen cycling and feedbacks in a global dynamic land model. Glob. Biogeochem. Cycles 24, GB1001 (2010)

    ADS  Google Scholar 

  4. Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A. & Mahowald, N. M. Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 21, GB4108 (2007)

    Article  Google Scholar 

  5. Houghton, R. A., Hall, F. & Goetz, S. J. Importance of biomass in the global carbon cycle. J. Geophys. Res. 114, G00E03 (2009)

    Article  ADS  Google Scholar 

  6. Hungate, B. A., Dukes, J. S., Shaw, R., Luo, Y. & Field, C. Nitrogen and climate change. Science 302, 1512–1513 (2003)

    Article  CAS  Google Scholar 

  7. Sprent, J. I. Legume Nodulation: A Global Perspective. (Wiley-Blackwell, 2009)

    Book  Google Scholar 

  8. Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosci. Discuss. 9, 3173–3232 (2012)

    Article  ADS  Google Scholar 

  9. Brown, S. & Lugo, A. E. Tropical secondary forests. J. Trop. Ecol. 6, 1–32 (1990)

    Article  Google Scholar 

  10. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011)

    Article  CAS  ADS  Google Scholar 

  11. Davidson, E. A. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, S150–S163 (2004)

    Article  Google Scholar 

  12. Amazonas, N. T., Martinelli, L. A., Piccolo, M. C. & Rodrigues, R. R. Nitrogen dynamics during ecosystem development in tropical forest restoration. For. Ecol. Manage. 262, 1551–1557 (2011)

    Article  Google Scholar 

  13. Russell, A. E. & Raich, J. W. Rapidly growing tropical trees mobilize remarkable amounts of nitrogen, in ways that differ surprisingly among species. Proc. Natl Acad. Sci. USA 109, 10398–10402 (2012)

    Article  CAS  ADS  Google Scholar 

  14. Gehring, C., Vlek, P. L. G., de Souza, L. A. G. & Denich, M. Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric. Ecosyst. Environ. 111, 237–252 (2005)

    Article  CAS  Google Scholar 

  15. Barron, A. R., Purves, D. W. & Hedin, L. O. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165, 511–520 (2011)

    Article  ADS  Google Scholar 

  16. Binkley, D., Senock, R. & Cromack, K., Jr Phosphorus limitation on nitrogen fixation by Facaltaria seedlings. For. Ecol. Manage. 186, 171–176 (2003)

    Article  Google Scholar 

  17. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991)

    Article  Google Scholar 

  18. van Groenigen, K. J. et al. Element interactions limit soil carbon storage. Proc. Natl Acad. Sci. USA 103, 6571–6574 (2006)

    Article  CAS  ADS  Google Scholar 

  19. Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009)

    Article  Google Scholar 

  20. Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011)

    Article  CAS  ADS  Google Scholar 

  21. Yang, X., Richardson, T. K. & Jain, A. K. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake. Biogeosciences 7, 3041–3050 (2010)

    Article  CAS  ADS  Google Scholar 

  22. van Breugel, M., Ransijn, J., Craven, D., Bongers, F. & Hall, J. S. Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models. For. Ecol. Manage. 262, 1648–1657 (2011)

    Article  Google Scholar 

  23. Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  24. Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosci. Discuss. 6, 3707–3769 (2009)

    Article  ADS  Google Scholar 

  25. Chave, J. et al. Error propagation and scaling for tropical forest biomass estimates. Phil. Trans. R. Soc. Lond. B 359, 409–420 (2004)

    Article  Google Scholar 

  26. Menge, D. N. & Hedin, L. O. Nitrogen fixation in different biogeochemical niches along a 120000-year chronosequence in New Zealand. Ecology 90, 2190–2201 (2009)

    Article  Google Scholar 

  27. Batterman, S. A., Wurzburger, N. & Hedin, L. O. Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J. Ecology (in the press)

  28. Barron, A. R. et al. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geosci. 2, 42–45 (2009)

    Article  CAS  ADS  Google Scholar 

  29. Hassler, S. K., Zimmerman, B., van Breugel, M., Hall, J. S. & Elsenbeer, H. Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. For. Ecol. Manage. 261, 1634–1642 (2011)

    Article  Google Scholar 

  30. Neumann-Cosel, L., Zimmerman, B., Hall, J. S., van Breugel, M. & Elsenbeer, H. Soil carbon dynamics under young tropical secondary forests on former pastures—a case study from Panama. For. Ecol. Manage. 261, 1625–1633 (2011)

    Article  Google Scholar 

  31. Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010)

    Article  Google Scholar 

  32. Jackson, R. B., Mooney, H. A. & Schulze, E. D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl Acad. Sci. USA 94, 7362–7366 (1997)

    Article  CAS  ADS  Google Scholar 

  33. Wolf, A., Field, C. & Berry, J. A. Allometric growth and allocation in forests: a perspective from FLUXNET. Ecol. Appl. 21, 1546–1556 (2011)

    Article  Google Scholar 

  34. Martin, A. R. & Thomas, S. C. A reassessment of carbon content in tropical trees. PLoS ONE 6, e23533 (2011)

    Article  CAS  ADS  Google Scholar 

  35. Craven, D. J. Dynamics of Tropical Secondary Forests in Central Panama: Linking Functional Traits with Ecological Performance during Succession. PhD thesis, Yale Univ. (2012)

  36. Townsend, A. R., Cleveland, C. C., Asner, G. P. & Bustamente, M. M. C. Controls over foliar N:P ratios in tropical rain forests. Ecology 88, 107–118 (2007)

    Article  Google Scholar 

  37. Martius, C. Density, humidity, and nitrogen content of dominant wood species of floodplain forests (várzea) in Amazonia. Eur. J. Wood Wood Products 50, 300–303 (1992)

    Article  CAS  Google Scholar 

  38. Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009)

    Article  Google Scholar 

  39. Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006)

    Article  Google Scholar 

  40. Barron, A. R. Patterns and Controls of Nitrogen Fixation in a Lowland Tropical Forest, Panama. PhD thesis, Princeton Univ. (2007)

Download references

Acknowledgements

We thank S. Adelberg and K. Zelazny for assisting with data collection, M. Baillon and A. Hernandez for botanical identifications, N. Wurzburger and A. Barron for species-specific N2 fixation rates, J. Sprent for advice about N2-fixing trees and P. Reich for comments. This work was supported by grants to L.O.H. from the National Science Foundation (NSF; DEB-0614116), the National Oceanic and Atmospheric Association (NOAA; grant NA17RJ262 – 344), the Cooperative Institute for Climate Science of Princeton University and the Carbon Mitigation Initiative of Princeton University; and to S.A.B. from the Smithsonian Tropical Research Institute (STRI). It is a contribution to the Agua Salud Project (ASP), a collaboration among STRI, the Panama Canal Authority (ACP) and the National Environmental Authority of Panama (ANAM). ASP funding came from the HSBC climate partnership, STRI, the Frank Levinson Family Foundation, the Motta Family Foundation and an anonymous donor.

Author information

Authors and Affiliations

Authors

Contributions

S.A.B., L.O.H., J.S.H. and M.v.B. designed the project. S.A.B. conducted N2-fixation-related field work. J.R., M.v.B. and J.S.H. provided allometry data; D.J.C. provided plant nutrient data. S.A.B. and L.O.H. wrote the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to Sarah A. Batterman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes 1-8, Supplementary Tables 1-7, Supplementary Figures 1-7 and Supplementary References. (PDF 1970 kb)

Supplementary Information

This file contains the Plant-soil N dynamics model, which should be run in code R1. (PDF 129 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batterman, S., Hedin, L., van Breugel, M. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013). https://doi.org/10.1038/nature12525

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12525

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology