Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-propagation of pathogenic protein aggregates in neurodegenerative diseases

Abstract

For several decades scientists have speculated that the key to understanding age-related neurodegenerative disorders may be found in the unusual biology of the prion diseases. Recently, owing largely to the advent of new disease models, this hypothesis has gained experimental momentum. In a remarkable variety of diseases, specific proteins have been found to misfold and aggregate into seeds that structurally corrupt like proteins, causing them to aggregate and form pathogenic assemblies ranging from small oligomers to large masses of amyloid. Proteinaceous seeds can therefore serve as self-propagating agents for the instigation and progression of disease. Alzheimer’s disease and other cerebral proteopathies seem to arise from the de novo misfolding and sustained corruption of endogenous proteins, whereas prion diseases can also be infectious in origin. However, the outcome in all cases is the functional compromise of the nervous system, because the aggregated proteins gain a toxic function and/or lose their normal function. As a unifying pathogenic principle, the prion paradigm suggests broadly relevant therapeutic directions for a large class of currently intractable diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Commonalities among age-related neurodegenerative diseases.

References

  1. Uversky, V. N. & Dunker, A. K. The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biol. Rep. 5, 1 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Malinovska, L., Kroschwald, S. & Alberti, S. Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim. Biophys. Acta 1834, 918–931 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. Thal, D. R., Rub, U., Orantes, M. & Braak, H. Phases of amyloid-β-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002)

    Article  PubMed  Google Scholar 

  6. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991)

    Article  CAS  PubMed  Google Scholar 

  7. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003)

    Article  PubMed  Google Scholar 

  8. Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. http://dx.doi.org/10.1002/ana.23937 (2013)

  9. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Aguzzi, A. & Calella, A. M. Prions: protein aggregation and infectious diseases. Physiol. Rev. 89, 1105–1152 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. Caughey, B., Baron, G. S., Chesebro, B. & Jeffrey, M. Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu. Rev. Biochem. 78, 177–204 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Head, M. W. & Ironside, J. W. Review: Creutzfeldt–Jakob disease: prion protein type, disease phenotype and agent strain. Neuropathol. Appl. Neurobiol. 38, 296–310 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. DeArmond, S. J. & Prusiner, S. B. Etiology and pathogenesis of prion diseases. Am. J. Pathol. 146, 785–811 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wadsworth, J. D. & Collinge, J. Molecular pathology of human prion disease. Acta Neuropathol. 121, 69–77 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, M., Collins, S. R., Toyama, B. H. & Weissman, J. S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Colby, D. W. & Prusiner, S. B. Prions. Cold Spring Harb. Perspect. Biol. 3, a006833 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Silveira, J. R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sandberg, M. K., Al-Doujaily, H., Sharps, B., Clarke, A. R. & Collinge, J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470, 540–542 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Jarrett, J. T. & Lansbury, P. T., Jr Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993)One of the first papers to suggest a common pathogenic mechanism between prion diseases and Alzheimer's disease based on in vitro protein aggregation studies.

    Article  CAS  PubMed  Google Scholar 

  22. Sipe, J. D. et al. Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 19, 167–170 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Buxbaum, J. N. & Linke, R. P. A molecular history of the amyloidoses. J. Mol. Biol. 421, 142–159 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. Blancas-Mejía, L. M. & Ramirez-Alvarado, M. Systemic amyloidoses. Annu. Rev. Biochem. 82, 745–774 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dobson, C. M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999) An early paper suggesting that all proteins have the intrinsic potential to form amyloid under suitable conditions.

    Article  CAS  PubMed  Google Scholar 

  26. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Maji, S. K. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greenwald, J. & Riek, R. Biology of amyloid: structure, function, and regulation. Structure 18, 1244–1260 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blanco, L. P., Evans, M. L., Smith, D. R., Badtke, M. P. & Chapman, M. R. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol. 20, 66–73 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. Wickner, R. B. et al. Amyloids and yeast prion biology. Biochemistry 52, 1514–1527 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mucke, L. & Selkoe, D. J. Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harbor Perspect. Med. 2, a006338 (2012)

  34. Tycko, R. & Wickner, R. B. Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc. Chem. Res. 46, 1487–1496 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, C. et al. Out-of-register β-sheets suggest a pathway to toxic amyloid aggregates. Proc. Natl Acad. Sci. USA 109, 20913–20918 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laganowsky, A. et al. Atomic view of a toxic amyloid small oligomer. Science 335, 1228–1231 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jan, A. et al. Aβ42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Aβ42 species. J. Biol. Chem. 286, 8585–8596 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005)This study demonstrates that the morphology and toxicity of synthetic β-amyloid fibrils are linked to variations in the molecular structure of the protein, and that these properties can be propagated to subsequent generations of fibrils in vitro by a seeding mechanism.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Toyama, B. H. & Weissman, J. S. Amyloid structure: conformational diversity and consequences. Annu. Rev. Biochem. 80, 557–585 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. Westermark, G. T. & Westermark, P. Prion-like aggregates: infectious agents in human disease. Trends Mol. Med. 16, 501–507 (2010)An overview of the prion-like properties of systemic amyloids.

    Article  CAS  PubMed  Google Scholar 

  41. Yan, J. et al. Cross-seeding and cross-competition in mouse apolipoprotein A-II amyloid fibrils and protein A amyloid fibrils. Am. J. Pathol. 171, 172–180 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xing, Y. et al. Transmission of mouse senile amyloidosis. Lab. Invest. 81, 493–499 (2001)

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, B. et al. Fecal transmission of AA amyloidosis in the cheetah contributes to high incidence of disease. Proc. Natl Acad. Sci. USA 105, 7263–7268 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Korenaga, T. et al. Transmission of amyloidosis in offspring of mice with AApoAII amyloidosis. Am. J. Pathol. 168, 898–906 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Strooper, B. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol. Rev. 90, 465–494 (2010)

    Article  CAS  PubMed  Google Scholar 

  46. Holtzman, D. M., Morris, J. C. & Goate, A. M. Alzheimer's disease: the challenge of the second century. Sci. Transl. Med. 3, 77s71 (2011)

    Google Scholar 

  47. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367, 795–804 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Villemagne, V. L. et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 12, 357–367 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. Baker, H. F., Ridley, R. M., Duchen, L. W., Crow, T. J. & Bruton, C. J. Evidence for the experimental transmission of cerebral β-amyloidosis to primates. Int. J. Exp. Pathol. 74, 441–454 (1993)Evidence that senile plaques in the brains of nonhuman primates are inducible by the intracerebral injection of Alzheimer's brain homogenates.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jucker, M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nature Med. 16, 1210–1214 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. Kane, M. D. et al. Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice. J. Neurosci. 20, 3606–3611 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006)The first conclusive demonstration that an aggregated form of Aβ is the β-amyloid-inducing agent in donor brain extracts, and that the transmission of cerebral β-amyloidosis is dependent on the nature of both the seed and the host.

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Morales, R., Duran-Aniotz, C., Castilla, J., Estrada, L. D. & Soto, C. De novo induction of amyloid-β deposition in vivo. Mol. Psychiatry 17, 1347–1353 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. Rosen, R. F. et al. Exogenous seeding of cerebral β-amyloid deposition in βAPP-transgenic rats. J. Neurochem. 120, 660–666 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. Langer, F. et al. Soluble amyloid-β seeds are potent inducers of cerebral β-amyloid deposition. J. Neurosci. 31, 14488–14495 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stöhr, J. et al. Purified and synthetic Alzheimer's amyloid beta (amyloid-β) prions. Proc. Natl Acad. Sci. USA 109, 11025–11030 (2012)Demonstration that Aβ deposition can be seeded in the brain by synthetic Aβ seeds.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Wang, F., Wang, X., Yuan, C. G. & Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 327, 1132–1135 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. LeVine III, H. & Walker, L. C. Molecular polymorphism of amyloid-β in Alzheimer's disease. Neurobiol. Aging 31, 542–548 (2010)

    Article  CAS  Google Scholar 

  60. Heilbronner, G. et al. Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep. http://dx.doi.org/10.1038/embor.2013.137 (3 September 2013)

  61. Jucker, M. & Walker, L. C. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol. 70, 532–540 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hamaguchi, T. et al. The presence of amyloid-β seeds, and not age per se, is critical to the initiation of amyloid-β deposition in the brain. Acta Neuropathol. 123, 31–37 (2012)

    Article  CAS  PubMed  Google Scholar 

  63. Eisele, Y. S. et al. Peripherally applied amyloid-β-containing inoculates induce cerebral β-amyloidosis. Science 330, 980–982 (2010)Demonstration that cerebral Aβ deposition can be induced by the introduction of Aβ seeds into the peritoneal cavity (a site outside the brain).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, V. M., Goedert, M. & Trojanowski, J. Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001)

    Article  CAS  PubMed  Google Scholar 

  65. Goldstein, L. E. et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Science Transl. Med. 4, 134ra160 (2012)

    Google Scholar 

  66. Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nature Cell Biol. 11, 909–913 (2009)The first report that tau lesions can be instigated in tau-transgenic mice by the intracerebral infusion of brain extracts containing aggregated tau.

    Article  CAS  PubMed  Google Scholar 

  67. Lasagna-Reeves, C. A. et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Scientific Rep. 2, 700 (2012)

    Article  CAS  Google Scholar 

  68. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guo, J. L. & Lee, V. M. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBS Lett. 587, 717–723 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Iba, M. et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J. Neurosci. 33, 1024–1037 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nature Rev. Neurology 9, 13–24 (2013)

    Article  CAS  Google Scholar 

  72. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nature Med. 14, 504–506 (2008)

    Article  CAS  PubMed  Google Scholar 

  73. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nature Med. 14, 501–503 (2008)These two reports (refs 72, 73) suggest that endogenous α-synuclein seeds in the brains of humans with Parkinson's disease can induce the aggregation of α-synuclein in grafted neurons.

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Hansen, C. et al. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kordower, J. H. et al. Transfer of host-derived α synuclein to grafted dopaminergic neurons in rat. Neurobiol. Dis. 43, 552–557 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Volpicelli-Daley, L. A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mougenot, A. L. et al. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol. Aging 33, 2225–2228 (2012)

    Article  CAS  PubMed  Google Scholar 

  79. Luk, K. C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986 (2012)These two studies (refs 78, 79) first showed that α-synuclein lesions can be induced in α-synuclein-transgenic mice by the intracerebral inoculation of brain extracts rich in aggregated α-synuclein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012)Describes the instigation of α-synucleinopathy by the intracerebral injection of synthetic α-synuclein fibrils into non-transgenic mice.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Masuda-Suzukake, M. et al. Prion-like spreading of pathological α-synuclein in brain. Brain 136, 1178–1138 (2013)

    Article  Google Scholar 

  82. Guo, J. L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013)This study describes the strain-dependent induction of tau aggregation by aggregated α-synuclein in vitro and in vivo.

    Article  CAS  PubMed  Google Scholar 

  83. Van Langenhove, T., van der Zee, J. & Van Broeckhoven, C. The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann. Med. 44, 817–828 (2012)

    Article  CAS  PubMed  Google Scholar 

  84. Rademakers, R., Neumann, M. & Mackenzie, I. R. Advances in understanding the molecular basis of frontotemporal dementia. Nature Rev. Neurol. 8, 423–434 (2012)

    Article  CAS  Google Scholar 

  85. Cruts, M., Gijselinck, I., Van Langenhove, T., van der Zee, J. & Van Broeckhoven, C. Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends Neurosci. 36, 450–459 (2013)

    Article  CAS  PubMed  Google Scholar 

  86. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. King, O. D., Gitler, A. D. & Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 1462, 61–80 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78 (2011)

    Article  CAS  PubMed  Google Scholar 

  90. Furukawa, Y., Kaneko, K., Watanabe, S., Yamanaka, K. & Nukina, N. A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. J. Biol. Chem. 286, 18664–18672 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Münch, C., O'Brien, J. & Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl Acad. Sci. USA 108, 3548–3553 (2011)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  92. Grad, L. I. et al. Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc. Natl Acad. Sci. USA 108, 16398–16403 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Polymenidou, M. & Cleveland, D. W. The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147, 498–508 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Xu, J. et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chem. Biol. 7, 285–295 (2011)

    Article  CAS  Google Scholar 

  96. Ano Bom, A. P. et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J. Biol. Chem. 287, 28152–28162 (2012)These two studies (refs 95, 96) demonstrate the aggregation and prion-like characteristics of p53, a protein that normally regulates the cell-cycle and acts to inhibit tumour formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sigurdson, C. J. & Aguzzi, A. Chronic wasting disease. Biochim. Biophys. Acta 1772, 610–618 (2007)

    Article  CAS  PubMed  Google Scholar 

  98. Hoinville, L. J. A review of the epidemiology of scrapie in sheep. Rev. Sci. Tech. 15, 827–852 (1996)

    Article  CAS  PubMed  Google Scholar 

  99. Collinge, J. et al. Kuru in the 21st century—an acquired human prion disease with very long incubation periods. Lancet 367, 2068–2074 (2006)

    Article  PubMed  Google Scholar 

  100. Brown, P. et al. Iatrogenic Creutzfeldt–Jakob disease, final assessment. Emerg. Infect. Dis. 18, 901–907 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  101. Irwin, D. J. et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  102. Johnson, S. M., Connelly, S., Fearns, C., Powers, E. T. & Kelly, J. W. The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J. Mol. Biol. 421, 185–203 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sievers, S. A. et al. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475, 96–100 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Saper, C. B., Wainer, B. H. & German, D. C. Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer's disease. Neuroscience 23, 389–398 (1987)

    Article  CAS  PubMed  Google Scholar 

  105. Ravits, J. M. & La Spada, A. R. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73, 805–811 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  106. Eidelberg, D. & Surmeier, D. J. Brain networks in Huntington disease. J. Clin. Invest. 121, 484–492 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gardner, R. C. et al. Intrinsic connectivity network disruption in progressive supranuclear palsy. Ann. Neurol. 73, 603–616 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bero, A. W. et al. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nature Neurosci. 14, 750–756 (2011)

    Article  CAS  PubMed  Google Scholar 

  111. Dolev, I. et al. Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. Nature Neurosci. 16, 587–595 (2013)

    Article  CAS  PubMed  Google Scholar 

  112. Pooler, A. M., Phillips, E. C., Lau, D. H., Noble, W. & Hanger, D. P. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 14, 389–394 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bae, E. J. et al. Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 32, 13454–13469 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Polymenidou, M. & Cleveland, D. W. Prion-like spread of protein aggregates in neurodegeneration. J. Exp. Med. 209, 889–893 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Holmes, B. B. & Diamond, M. I. Cellular mechanisms of protein aggregate propagation. Curr. Opin. Neurol. 25, 721–726 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wu, J. W. et al. Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem. 288, 1856–1870 (2013)

    Article  CAS  PubMed  Google Scholar 

  117. Aguzzi, A. & Rajendran, L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64, 1856–790 (2009)

    Article  CAS  Google Scholar 

  118. Nath, S. et al. Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid. J. Neurosci. 32, 8767–8777 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kfoury, N., Holmes, B. B., Jiang, H., Holtzman, D. M. & Diamond, M. I. Trans-cellular propagation of Tau aggregation by fibrillar species. J. Biol. Chem. 287, 19440–19451 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Freundt, E. C. et al. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann. Neurol. 72, 517–524 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ren, P. H. et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nature Cell Biol. 11, 219–225 (2009)

    Article  CAS  PubMed  Google Scholar 

  122. Selkoe, D. J. Resolving controversies on the path to Alzheimer's therapeutics. Nature Med. 17, 1060–1065 (2011)

    Article  CAS  PubMed  Google Scholar 

  123. Gajdusek, D. C. Spontaneous generation of infectious nucleating amyloids in the transmissible and nontransmissible cerebral amyloidoses. Mol. Neurobiol. 8, 1–13 (1994)

    Article  CAS  PubMed  Google Scholar 

  124. Lee, J., Culyba, E. K., Powers, E. T. & Kelly, J. W. Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nature Chem. Biol. 7, 602–609 (2011)

    Article  CAS  Google Scholar 

  125. Knowles, T. P. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nature Nanotechnol. 6, 469–479 (2011)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Eisenberg, H. LeVine, A. Aguzzi, J. Collinge, R. Rosen, Y. Eisele, A. Mehta, M. Gearing, J. Manson, M. Neumann, and the members of our laboratories for critical discussions and comments. The help of H. Braak with Fig. 1, and the help of S. Eberle with the manuscript and figures is gratefully acknowledged. This work was supported by grants from the Competence Network on Degenerative Dementias (BMBF-01GI0705), ALZKULT (BMBF-031A198A), NGFN2 (BMBF-01GS08131), and anonymous foundations (to M.J.), and by National Institutes of Health grants R21AG040589, P51RR165, P51OD11132, and the CART Foundation (to L.C.W.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

M.J. and L.C.W. contributed to the writing of the review

Corresponding authors

Correspondence to Mathias Jucker or Lary C. Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jucker, M., Walker, L. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013). https://doi.org/10.1038/nature12481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12481

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing