Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein

This article has been updated

Abstract

Prion infections cause lethal neurodegeneration. This process requires the cellular prion protein (PrPC; ref. 1), which contains a globular domain hinged to a long amino-proximal flexible tail2. Here we describe rapid neurotoxicity in mice and cerebellar organotypic cultured slices exposed to ligands targeting the α1 and α3 helices of the PrPC globular domain. Ligands included seven distinct monoclonal antibodies3, monovalent Fab1 fragments and recombinant single-chain variable fragment miniantibodies. Similar to prion infections4,5,6, the toxicity of globular domain ligands required neuronal PrPC, was exacerbated by PrPC overexpression, was associated with calpain activation and was antagonized by calpain inhibitors. Neurodegeneration was accompanied by a burst of reactive oxygen species, and was suppressed by antioxidants. Furthermore, genetic ablation of the superoxide-producing enzyme NOX2 (also known as CYBB) protected mice from globular domain ligand toxicity. We also found that neurotoxicity was prevented by deletions of the octapeptide repeats within the flexible tail. These deletions did not appreciably compromise globular domain antibody binding, suggesting that the flexible tail is required to transmit toxic signals that originate from the globular domain and trigger oxidative stress and calpain activation. Supporting this view, various octapeptide ligands were not only innocuous to both cerebellar organotypic cultured slices and mice, but also prevented the toxicity of globular domain ligands while not interfering with their binding. We conclude that PrPC consists of two functionally distinct modules, with the globular domain and the flexible tail exerting regulatory and executive functions, respectively. Octapeptide ligands also prolonged the life of mice expressing the toxic PrPC mutant7, PrP(Δ94–134), indicating that the flexible tail mediates toxicity in two distinct PrPC-related conditions. Flexible tail-mediated toxicity may conceivably play a role in further prion pathologies, such as familial Creutzfeldt-Jakob disease in humans bearing supernumerary octapeptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epitope specificity of the neurotoxicity mediated by antiprion antibodies.
Figure 2: Antibody-mediated toxicity in cerebellar slices does not require crosslinking or antibody effector functions.
Figure 3: Neuroprotection against globular domain ligand toxicity.
Figure 4: In vivo toxicity of antibodies binding to PrP.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Data deposits

X-ray crystallographic coordinates and structure factor files have been deposited in the RSCB Protein Data Bank (PDB) database under the accession code number 4H88.

Change history

  • 04 September 2013

    Minor changes were made to the Acknowledgements.

References

  1. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Riek, R. et al. NMR structure of the mouse prion protein domain PrP(121–231). Nature 382, 180–182 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Polymenidou, M. et al. The POM monoclonals: a comprehensive set of antibodies to non-overlapping prion protein epitopes. PLoS ONE 3, e3872 (2008)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  4. Falsig, J. et al. Prion pathogenesis is faithfully reproduced in cerebellar organotypic slice cultures. PLoS Pathog. 8, e1002985 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fischer, M. et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Baumann, F. et al. Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J. 26, 538–547 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aguzzi, A. & Calella, A. M. Prions: protein aggregation and infectious diseases. Physiol. Rev. 89, 1105–1152 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. Falsig, J. & Aguzzi, A. The prion organotypic slice culture assay—POSCA. Nature Protocols 3, 555–562 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Riek, R., Hornemann, S., Wider, G., Glockshuber, R. & Wüthrich, K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett. 413, 282–288 (1997)

    Article  CAS  PubMed  Google Scholar 

  11. Solforosi, L. et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Büeler, H. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992)

    Article  ADS  PubMed  Google Scholar 

  13. Zahn, R. et al. NMR solution structure of the human prion protein. Proc. Natl Acad. Sci. USA 97, 145–150 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wüthrich, K. & Riek, R. Three-dimensional structures of prion proteins. Adv. Protein Chem. 57, 55–82 (2001)

    Article  PubMed  Google Scholar 

  15. Flechsig, E. et al. Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27, 399–408 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Bremer, J. et al. Axonal prion protein is required for peripheral myelin maintenance. Nature Neurosci. 13, 310–318 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Wang, K. K. Calpain and caspase: can you tell the difference? Trends Neurosci. 23, 20–26 (2000)

    Article  PubMed  Google Scholar 

  18. Fatokun, A. A., Stone, T. W. & Smith, R. A. Oxidative stress in neurodegeneration and available means of protection. Front. Biosci. 13, 3288–3311 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. Sorce, S. & Krause, K. H. NOX enzymes in the central nervous system: from signaling to disease. Antioxid. Redox Signal. 11, 2481–2504 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Silva, A. C., Lee, J. H., Aoki, I. & Koretsky, A. P. Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed. 17, 532–543 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. Granados-Principal, S., Quiles, J. L., Ramirez-Tortosa, C. L., Sanchez-Rovira, P. & Ramirez-Tortosa, M. C. Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr. Rev. 68, 191–206 (2010)

    Article  PubMed  Google Scholar 

  22. Pollock, J. D. et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nature Genet. 9, 202–209 (1995)

    Article  CAS  PubMed  Google Scholar 

  23. Yamaguchi, Y. et al. Biological and biochemical characterization of mice expressing prion protein devoid of the octapeptide repeat region after infection with prions. PLoS ONE 7, e43540 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiesa, R., Piccardo, P., Ghetti, B. & Harris, D. A. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21, 1339–1351 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. Krasemann, S. et al. Prion disease associated with a novel nine octapeptide repeat insertion in the PRNP gene. Brain Res. Mol. Brain Res. 34, 173–176 (1995)

    Article  CAS  PubMed  Google Scholar 

  26. Mead, S. et al. Inherited prion disease with six octapeptide repeat insertional mutation–molecular analysis of phenotypic heterogeneity. Brain 129, 2297–2317 (2006)

    Article  PubMed  Google Scholar 

  27. Vital, C., Gray, F., Vital, A., Ferrer, X. & Julien, J. Prion disease with octapeptide repeat insertion. Clin. Exp. Pathol. 47, 153–159 (1999)

    CAS  PubMed  Google Scholar 

  28. Meier, P. et al. Soluble dimeric prion protein binds PrPScin vivo and antagonizes prion disease. Cell 113, 49–60 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Zahn, R., von Schroetter, C. & Wüthrich, K. Human prion proteins expressed in Escherichia coli and purified by high- affinity column refolding. FEBS Lett. 417, 400–404 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. Lysek, D. A. & Wuthrich, K. Prion protein interaction with the C-terminal SH3 domain of Grb2 studied using NMR and optical spectroscopy. Biochemistry 43, 10393–10399 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Aller, M. I. et al. Cerebellar granule cell Cre recombinase expression. Genesis 36, 97–103 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Mallucci, G. R. et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202–210 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Radovanovic, I. et al. Truncated prion protein and Doppel are myelinotoxic in the absence of oligodendrocytic PrPC. J. Neurosci. 25, 4879–4888 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prinz, M. et al. Intrinsic resistance of oligodendrocytes to prion infection. J. Neurosci. 24, 5974–5981 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature Med. 11, 146–152 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. Levites, Y. et al. Intracranial adeno-associated virus-mediated delivery of anti-pan amyloid β, amyloid β40, and amyloid β42 single-chain variable fragments attenuates plaque pathology in amyloid precursor protein mice. J. Neurosci. 26, 11923–11928 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grünecker, B. et al. Fractionated manganese injections: effects on MRI contrast enhancement and physiological measures in C57BL/6 mice. NMR Biomed. 23, 913–921 (2010)

    Article  PubMed  Google Scholar 

  38. Faas, H. et al. Context-dependent perturbation of neural systems in transgenic mice expressing a cytosolic prion protein. Neuroimage 49, 2607–2617 (2010)

    Article  PubMed  Google Scholar 

  39. Falsig, J. et al. A versatile prion replication assay in organotypic brain slices. Nature Neurosci. 11, 109–117 (2008)

    Article  CAS  PubMed  Google Scholar 

  40. Das, D., Allen, T. M. & Suresh, M. R. Comparative evaluation of two purification methods of anti-CD19-c-myc-His6-Cys scFv. Protein Expr. Purif. 39, 199–208 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. Baudino, L. et al. IgM and IgA anti-erythrocyte autoantibodies induce anemia in a mouse model through multivalency-dependent hemagglutination but not through complement activation. Blood 109, 5355–5362 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. Hornemann, S., Christen, B., von Schroetter, C., Perez, D. R. & Wuthrich, K. Prion protein library of recombinant constructs for structural biology. FEBS J. 276, 2359–2367 (2009)

    Article  CAS  PubMed  Google Scholar 

  43. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl Acad. Sci. USA 94, 12366–12371 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Keller, R. L. J. The Computer-aided Resonance Assignment Tutorial CARA (Cantina Verlag. 2004) (2004)

  45. Riek, R. NMR of the mouse prion protein, PhD thesis, ETH Zürich (1998)

  46. Baral, P. K. et al. Crystallization and preliminary X-ray diffraction analysis of prion protein bound to the Fab fragment of the POM1 antibody. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 1211–1213 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cohen, A. E., Ellis, P. J., Miller, M. D., Deacon, A. M. & Phizackerley, R. P. An automated system to mount cryo-cooled protein crystals on a synchrotron beamline, using compact sample cassettes and a small-scale robot. J. Appl. Crystallogr. 35, 720–726 (2002)

    Article  CAS  PubMed  Google Scholar 

  48. González, A. et al. Web-Ice: integrated data collection and analysis for macromolecular crystallography. J. Appl. Crystallogr. 41, 176–184 (2008)

    Article  CAS  Google Scholar 

  49. McPhillips, T. M. et al. Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 9, 401–406 (2002)

    Article  CAS  PubMed  Google Scholar 

  50. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  51. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997)

    Article  CAS  Google Scholar 

  52. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Echols, N. et al. Graphical tools for macromolecular crystallography in PHENIX. J. Appl. Crystallogr. 45, 581–586 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  CAS  Google Scholar 

  55. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Izui, H. Monyer, D. Burton and G. Mallucci for reagents and mice, S. Schauer and the Functional Genomics Center Zurich for advice and help with affinity determinations, A. Steingötter, U. Ungethüm, M. Polymenidou, A. Lau and A. Keller for input, R. Moos, B. Sikorska, C. Tiberi, P. Schwarz, A. Varol, K. Arroyo and M. Delic for technical help. A.A. is the recipient of an Advanced Grant of the European Research Council and is supported by grants from the European Union (PRIORITY, LUPAS and NEURINOX), the Swiss National Foundation, the Foundation Alliance BioSecure, the Clinical Research Priority Program (KFSP) of the University of Zurich, and the Novartis Research Foundation. J.F. is supported by a career development award of the University of Zurich. Research support from PrioNet Canada and Alberta Prion Research Institute (APRI) for the work conducted in the Canadian laboratories is gratefully acknowledged. P.P.L. and A.A. are supported by Polish Swiss Research grant nr PSPB-062/2010. This paper is dedicated to the memory of Dr Marek Fischer, who created the tga20 mouse line.

Author information

Authors and Affiliations

Authors

Contributions

T.S., J.F. and A.A. conceived the study. Planning and execution were performed by T.S. with significant contributions from R.R.R., J.F. and additional contribution from T.O’C., S.H., S.Y., B.L. and U.S.H. MEMRI was established and performed by R.R.R.; electron microscopy was performed by P.P.L.; scFv were cloned and produced by B.W., M.S., M.H.R., D.D. and N.K.; X-ray crystallography was performed by P.K.B. and M.N.G.J.; and NMR experiments were performed by S.H. with additional contributions from R.R. T.S., J.F. and A.A. wrote the manuscript.

Corresponding author

Correspondence to Adriano Aguzzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-4 and Supplementary Figures 1- 15. (PDF 4156 kb)

Three-dimensional representation of the complex between rmPrP120-231 and F(ab)1POM1

Video derived from the structure of its crystal. The rotating image visualizes a discontinuous epitope on PrP with interactions involving both the β1-α1 loop and helix α3. (WMV 5916 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonati, T., Reimann, R., Falsig, J. et al. The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 501, 102–106 (2013). https://doi.org/10.1038/nature12402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12402

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing