Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A variable absorption feature in the X-ray spectrum of a magnetar

Abstract

Soft-γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays1,2. This behaviour can be understood in the magnetar model3,4,5, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties6,7,8 of SGRs and AXPs are greater than—or at the high end of the range of—those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters9, whereas a strong field has been proposed to reside in the stellar interior10,11 and in multipole components on the surface12. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star’s rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2 × 1014 gauss to more than 1015 gauss.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase-dependent spectral feature in the EPIC data of SGR 0418+5729.
Figure 2: Results of the phase-resolved spectroscopy of SGR 0418+5729.
Figure 3: Example of a phase-resolved EPIC pn spectrum and its residuals with respect to different models.

Similar content being viewed by others

References

  1. Mereghetti, S. The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. Astron. Astrophys. Rev. 15, 225–287 (2008)

    Article  ADS  Google Scholar 

  2. Rea, N. & Esposito, P. in High-Energy Emission from Pulsars and their Systems (eds Torres, D. F. & Rea, N. ) 247–273 (Astrophysics and Space Science Proceedings, Springer, 2011)

    Book  Google Scholar 

  3. Thompson, C. & Duncan, R. C. The soft gamma repeaters as very strongly magnetized neutron stars — I. Radiative mechanism for outbursts. Mon. Not. R. Astron. Soc. 275, 255–300 (1995)

    Article  ADS  Google Scholar 

  4. Thompson, C. & Duncan, R. C. The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent neutrino, X-ray, and Alfven wave emission. Astrophys. J. 473, 322–342 (1996)

    Article  CAS  ADS  Google Scholar 

  5. Thompson, C., Lyutikov, M. & Kulkarni, S. R. Electrodynamics of magnetars: implications for the persistent X-ray emission and spin-down of the soft gamma repeaters and anomalous X-ray pulsars. Astrophys. J. 574, 332–355 (2002)

    Article  ADS  Google Scholar 

  6. Kouveliotou, C. et al. An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR 1806–20. Nature 393, 235–237 (1998)

    Article  CAS  ADS  Google Scholar 

  7. Thompson, C. & Duncan, R. C. The giant flare of 1998 August 27 from SGR 1900+14. II. Radiative mechanism and physical constraints on the source. Astrophys. J. 561, 980–1005 (2001)

    Article  ADS  Google Scholar 

  8. Vietri, M., Stella, L. & Israel, G. L. SGR 1806–20: evidence for a superstrong magnetic field from quasi-periodic oscillations. Astrophys. J. 661, 1089–1093 (2007)

    Article  ADS  Google Scholar 

  9. Rea, N. et al. The outburst decay of the low magnetic field magnetar SGR 0418+5729. Astrophys. J. 770, 65 (2013)

    Article  ADS  Google Scholar 

  10. Rea, N. et al. A low-magnetic-field soft gamma repeater. Science 330, 944 (2010)

    Article  CAS  ADS  Google Scholar 

  11. Turolla, R., Zane, S., Pons, J. A., Esposito, P. & Rea, N. Is SGR 0418+5729 indeed a waning magnetar? Astrophys. J. 740, 105 (2011)

    Article  ADS  Google Scholar 

  12. Güver, T., Göğüş, E. & Özel, F. A magnetar strength surface magnetic field for the slowly spinning down SGR 0418+5729. Mon. Not. R. Astron. Soc. 418, 2773–2778 (2011)

    Article  ADS  Google Scholar 

  13. van der Horst, A. J. et al. Discovery of a new soft gamma repeater: SGR J0418+5729. Astrophys. J. 711, L1–L6 (2010)

    Article  ADS  Google Scholar 

  14. Esposito, P. et al. Early X-ray and optical observations of the soft gamma-ray repeater SGR0418+5729. Mon. Not. R. Astron. Soc. 405, 1787–1795 (2010)

    CAS  ADS  Google Scholar 

  15. Makishima, K. et al. Observations of the peculiar hard X-ray transient X0331+53 (V 0332+53). Publ. Astron. Soc. Jpn 42, 295–315 (1990)

    CAS  ADS  Google Scholar 

  16. Truemper, J. et al. Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1. Astrophys. J. 219, L105–L110 (1978)

    Article  ADS  Google Scholar 

  17. Heindl, W. A. et al. in X-ray Timing 2003: Rossi and Beyond (eds Kaaret, P., Lamb, F. K. & Swank, J. H. ) 323–330 (AIP Conf. Ser. Vol. 714, American Institute of Physics, 2004)

  18. Turolla, R. in Neutron Stars and Pulsars (ed. Becker, W. ) 141–163 (Astrophysics and Space Science Proceedings Vol. 357, Springer, 2009)

    Book  Google Scholar 

  19. Haberl, F. et al. Evidence for precession of the isolated neutron star RX J0720.4–3125. Astron. Astrophys. 451, L17–L21 (2006)

    Article  CAS  ADS  Google Scholar 

  20. van Kerkwijk, M. H. & Kaplan, D. L. Isolated neutron stars: magnetic fields, distances, and spectra. Astrophys. Space Sci. 308, 191–201 (2007)

    Article  ADS  Google Scholar 

  21. Bignami, G. F., Caraveo, P. A., De Luca, A. & Mereghetti, S. The magnetic field of an isolated neutron star from X-ray cyclotron absorption lines. Nature 423, 725–727 (2003)

    Article  CAS  ADS  Google Scholar 

  22. Gotthelf, E. V., Halpern, J. P. & Alford, J. The spin-down of PSR J0821–4300 and PSR J1210–5226: confirmation of central compact objects as anti-magnetars. Astrophys. J. 765, 58 (2013)

    Article  ADS  Google Scholar 

  23. Kargaltsev, O., Durant, M., Misanovic, Z. & Pavlov, G. G. Absorption features in the X-ray spectrum of an ordinary radio pulsar. Science 337, 946–949 (2012)

    Article  CAS  ADS  Google Scholar 

  24. Potekhin, A. Y. Hydrogen atom moving across a strong magnetic field: analytical approximations. J. Phys. At. Mol. Opt. Phys. 31, 49–63 (1998)

    Article  CAS  ADS  Google Scholar 

  25. Medin, Z., Lai, D. & Potekhin, A. Y. Radiative transitions of the helium atom in highly magnetized neutron star atmospheres. Mon. Not. R. Astron. Soc. 383, 161–172 (2008)

    Article  CAS  ADS  Google Scholar 

  26. Mori, K. & Ho, W. C. G. Modelling mid-Z element atmospheres for strongly magnetized neutron stars. Mon. Not. R. Astron. Soc. 377, 905–919 (2007)

    Article  CAS  ADS  Google Scholar 

  27. Beloborodov, A. M. & Thompson, C. Corona of magnetars. Astrophys. J. 657, 967–993 (2007)

    Article  CAS  ADS  Google Scholar 

  28. Gelfand, J. D. et al. A rebrightening of the radio nebula associated with the 2004 December 27 giant flare from SGR 1806–20. Astrophys. J. 634, L89–L92 (2005)

    Article  CAS  ADS  Google Scholar 

  29. Masada, Y., Nagataki, S., Shibata, K. & Terasawa, T. Solar-type magnetic reconnection model for magnetar giant flares. Publ. Astron. Soc. Jpn. 62, 1093–1102 (2010)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Goggi and C. Paizis for discussions. This work is based on data and software provided by the ESA XMM-Newton Science Archive (XSA) and the NASA/GSFC High Energy Astrophysics Science Archive Research Center (HEASARC). We acknowledge partial funding from INAF through a PRIN 2010 grant and ASI through contract I/032/10/0.

Author information

Authors and Affiliations

Authors

Contributions

A.T., P.E. and S.M. processed and analysed the data, with contributions by F.G. and D.G.; theoretical interpretation was provided by R.T., L.N. and A.T., with contributions by S.Z. and L.S.; A.T., P.E., S.M. and R.T. composed the text, using inputs from the other co-authors; all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Andrea Tiengo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Table 1, additional references and Supplementary Figures 4-7 (PDF 901 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiengo, A., Esposito, P., Mereghetti, S. et al. A variable absorption feature in the X-ray spectrum of a magnetar. Nature 500, 312–314 (2013). https://doi.org/10.1038/nature12386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12386

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing