Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deterministic quantum teleportation of photonic quantum bits by a hybrid technique

Abstract

Quantum teleportation1 allows for the transfer of arbitrary unknown quantum states from a sender to a spatially distant receiver, provided that the two parties share an entangled state and can communicate classically. It is the essence of many sophisticated protocols for quantum communication and computation2,3,4,5. Photons are an optimal choice for carrying information in the form of ‘flying qubits’, but the teleportation of photonic quantum bits6,7,8,9,10,11 (qubits) has been limited by experimental inefficiencies and restrictions. Main disadvantages include the fundamentally probabilistic nature of linear-optics Bell measurements12, as well as the need either to destroy the teleported qubit or attenuate the input qubit when the detectors do not resolve photon numbers13. Here we experimentally realize fully deterministic quantum teleportation of photonic qubits without post-selection. The key step is to make use of a hybrid technique involving continuous-variable teleportation14,15,16 of a discrete-variable, photonic qubit. When the receiver’s feedforward gain is optimally tuned, the continuous-variable teleporter acts as a pure loss channel17,18, and the input dual-rail-encoded qubit, based on a single photon, represents a quantum error detection code against photon loss19 and hence remains completely intact for most teleportation events. This allows for a faithful qubit transfer even with imperfect continuous-variable entangled states: for four qubits the overall transfer fidelities range from 0.79 to 0.82 and all of them exceed the classical limit of teleportation. Furthermore, even for a relatively low level of the entanglement, qubits are teleported much more efficiently than in previous experiments, albeit post-selectively (taking into account only the qubit subspaces), and with a fidelity comparable to the previously reported values.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Experimental density matrices.
Figure 3: Experimental results of teleportation including gain tuning.

Similar content being viewed by others

References

  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Pan, J.-W., Gasparoni, S., Aspelmeyer, M., Jennewein, T. & Zeilinger, A. Experimental realization of freely propagating teleported qubits. Nature 421, 721–725 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012)

    Article  ADS  CAS  Google Scholar 

  12. Lütkenhaus, N., Calsamiglia, J. & Suominen, K.-A. Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Pan, J.-. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012)

    Article  ADS  Google Scholar 

  14. Vaidman, L. Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994)

    Article  ADS  CAS  Google Scholar 

  15. Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Hofmann, H. F., Ide, T., Kobayashi, T. & Furusawa, A. Information losses in continuous-variable quantum teleportation. Phys. Rev. A 64, 040301(R) (2001)

    Article  ADS  Google Scholar 

  18. Polkinghorne, R. E. S. & Ralph, T. C. Continuous variable entanglement swapping. Phys. Rev. Lett. 83, 2095–2099 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 380–386 (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  20. Braunstein, S. L. & Kimble, H. J. A posteriori teleportation. Nature 394, 840–841 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Yonezawa, H., Braunstein, S. L. & Furusawa, A. Experimental demonstration of quantum teleportation of broadband squeezing. Phys. Rev. Lett. 99, 110503 (2007)

    Article  ADS  Google Scholar 

  22. Ide, T., Hofmann, H. F., Kobayashi, T. & Furusawa, A. Continuous-variable teleportation of single-photon states. Phys. Rev. A 65, 012313 (2001)

    Article  ADS  Google Scholar 

  23. Lee, N. et al. Teleportation of nonclassical wave packets of light. Science 332, 330–333 (2011)

    Article  ADS  CAS  Google Scholar 

  24. Takeda, S. et al. Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing. Phys. Rev. A 87, 043803 (2013)

    Article  ADS  Google Scholar 

  25. Bowen, W. P. et al. Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A 67, 032302 (2003)

    Article  ADS  Google Scholar 

  26. Jia, X. et al. Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93, 250503 (2004)

    Article  ADS  Google Scholar 

  27. Mišta, L., Jr, Filip, R. & Furusawa, A. Continuous-variable teleportation of a negative Wigner function. Phys. Rev. A 82, 012322 (2010)

    Article  ADS  Google Scholar 

  28. Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  29. Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Zavatta, A., D’Angelo, M., Parigi, V. & Bellini, M. Remote preparation of arbitrary time-encoded single-photon ebits. Phys. Rev. Lett. 96, 020502 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by PDIS, GIA, G-COE, APSA and FIRST, commissioned by MEXT (Japan); by the SCOPE programme commissioned by MIC (Japan); and by ASCR-JSPS. S.T. and M.F. acknowledge financial support from ALPS. We thank L. Mišta Jr, H. Yonezawa and J. Kimble for comments.

Author information

Authors and Affiliations

Authors

Contributions

A.F. planned and supervised the project. P.v.L. and S.T. theoretically defined the scientific goals. S.T. and T.M. designed and performed the experiment, and acquired the data. S.T. and M.F. developed the electronic devices. S.T., T.M. and M.F. analysed the data. S.T. and P.v.L. wrote the manuscript with assistance from all other co-authors.

Corresponding author

Correspondence to Akira Furusawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Data, Supplementary References, Supplementary Figures 1-2 and Supplementary Tables 1-2. (PDF 1994 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, S., Mizuta, T., Fuwa, M. et al. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500, 315–318 (2013). https://doi.org/10.1038/nature12366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12366

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing