Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Van der Waals heterostructures

Abstract

Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging research area and identify possible future directions. With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Building van der Waals heterostructures.
Figure 2: Current 2D library.
Figure 3: State-of-the-art van der Waals structures and devices.
Figure 4: Early harvest in van der Waals fields.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012)

    ADS  CAS  PubMed  Google Scholar 

  2. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnol. 5, 722–726 (2010)This paper attracted attention to hBN as a substrate and initiated the development of transfer techniques essential for the van der Waals reassembly.

    ADS  CAS  Google Scholar 

  3. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011)

    ADS  CAS  PubMed  Google Scholar 

  4. Mayorov, A. S. et al. How close can one approach the Dirac point in graphene experimentally? Nano Lett. 12, 4629–4634 (2012)

    ADS  CAS  PubMed  Google Scholar 

  5. Bao, W. et al. Evidence for a spontaneous gapped state in ultraclean bilayer graphene. Proc. Natl Acad. Sci. USA 109, 10802–10805 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005)This was the first paper to demonstrate the electric field effect and study electron transport in 2D crystals other than graphene.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J. & Zamora, F. 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011)

    ADS  PubMed  Google Scholar 

  8. Osada, M. & Sasaki, T. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012)

    CAS  PubMed  Google Scholar 

  9. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnol. 7, 699–712 (2012)

    ADS  CAS  Google Scholar 

  10. Xu, M., Lian, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013)We recommend this review for initial acquaintance with 2D materials other than graphene.

    CAS  PubMed  Google Scholar 

  11. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013)

    CAS  PubMed  Google Scholar 

  12. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotechnol. 6, 147–150 (2011)The paper attracted critical attention to electron transport in MoS 2 monolayers.

    ADS  CAS  Google Scholar 

  13. Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nature Nanotechnol. 8, 146–147 (2013)

    ADS  CAS  Google Scholar 

  14. Ponomarenko, L. A. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Phys. 7, 958–961 (2011)This is the first demonstration of multilayer van der Waals heterostructures, beyond using hBN, mica and so on as a substrate.

    ADS  CAS  Google Scholar 

  15. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012)

    ADS  CAS  PubMed  Google Scholar 

  16. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature Mater. 11, 764–767 (2012)The paper proves the concept of complex heterostructures, including manually assembled van der Waals superlattices, and shows that their interfaces can be atomically sharp and clean.

    ADS  CAS  Google Scholar 

  17. Dean, C. R. et al. Graphene based heterostructures. Solid State Commun. 152, 1275–1282 (2012)

    ADS  CAS  Google Scholar 

  18. Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nature Phys. 8, 896–901 (2012)

    ADS  CAS  Google Scholar 

  19. Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotechnol. 8, 100–103 (2013)

    ADS  CAS  Google Scholar 

  20. Kastner, M. A., Birgeneau, R. J., Shirane, G. & Endoh, Y. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. 70, 897–928 (1998)

    ADS  CAS  Google Scholar 

  21. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000)

    ADS  CAS  PubMed  Google Scholar 

  22. Weller, T. E., Ellerby, M., Saxena, S. S., Smith, R. P. & Skipper, N. T. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nature Phys. 1, 39–41 (2005)

    ADS  CAS  Google Scholar 

  23. Profeta, G., Calandra, M. & Mauri, F. Phonon-mediated superconductivity in graphene by lithium deposition. Nature Phys. 8, 131–134 (2012)

    ADS  CAS  Google Scholar 

  24. Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nature Phys. 8, 158–163 (2012)

    ADS  CAS  Google Scholar 

  25. Savini, G., Ferrari, A. C. & Giustino, F. First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor. Phys. Rev. Lett. 105, 037002 (2010)

    ADS  CAS  PubMed  Google Scholar 

  26. Guinea, F. & Uchoa, B. Odd-momentum pairing and superconductivity in vertical graphene heterostructures. Phys. Rev. B 86, 134521 (2012)

    ADS  Google Scholar 

  27. Min, H., Bistritzer, R., Su, J. J. & MacDonald, A. H. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 78, 121401 (2008)

    ADS  Google Scholar 

  28. Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013)

    ADS  CAS  PubMed  Google Scholar 

  29. Geim, A. K. Random walk to graphene. Rev. Mod. Phys. 83, 851–862 (2011)

    ADS  CAS  Google Scholar 

  30. Liu, L. et al. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965–1970 (2008)

    ADS  CAS  PubMed  Google Scholar 

  31. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009)

    ADS  CAS  PubMed  Google Scholar 

  32. Ross, S. & Sussman, A. Surface oxidation of molybdenum disulfide. J. Phys. Chem. 59, 889–892 (1955)

    CAS  Google Scholar 

  33. Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)

    ADS  PubMed  Google Scholar 

  34. Fleurence, A. et al. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012)

    ADS  PubMed  Google Scholar 

  35. Lui, C. H., Liu, L., Mak, K. F., Flynn, G. W. & Heinz, T. F. Ultraflat graphene. Nature 462, 339–341 (2009)

    ADS  CAS  PubMed  Google Scholar 

  36. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Electrically tunable transverse magnetic focusing in graphene. Nature Phys. 9, 225–229 (2013)

    ADS  CAS  Google Scholar 

  37. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater. 3, 404–409 (2004)

    ADS  CAS  Google Scholar 

  38. Zomer, P. J., Dash, S. P., Tombros, N. & van Wees, B. J. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011)

    ADS  Google Scholar 

  39. Meric, I. et al. Graphene field-effect transistors based on boron nitride gate dielectrics. Tech. Digest Int. Electron Devices Meet. 2010 IEEE Int. 10 556–559 10.1109/IEDM.2010.5703419 (2010)

    Article  Google Scholar 

  40. Lee, G. H. et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011)

    ADS  Google Scholar 

  41. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012)

    ADS  CAS  PubMed  Google Scholar 

  42. Gordon, R. A., Yang, D., Crozier, E. D., Jiang, D. T. & Frindt, R. F. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65, 125407 (2002)

    ADS  Google Scholar 

  43. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010)

    ADS  CAS  PubMed  Google Scholar 

  44. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    ADS  PubMed  Google Scholar 

  45. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnol. 7, 490–493 (2012)

    ADS  CAS  Google Scholar 

  46. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnol. 7, 494–498 (2012)

    ADS  CAS  Google Scholar 

  47. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012)

    ADS  CAS  PubMed  Google Scholar 

  48. Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013)

    CAS  PubMed  Google Scholar 

  49. Tonndorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2 . Opt. Express 21, 4908–4916 (2013)

    ADS  CAS  PubMed  Google Scholar 

  50. Nair, R. R. et al. Fluorographene: a two-dimensional counterpart of Teflon. Small 6, 2877–2884 (2010)

    CAS  PubMed  Google Scholar 

  51. Bianco, E. et al. Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7, 4414–4421 (2013)

    CAS  PubMed  Google Scholar 

  52. Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nature Nanotechnol. 4, 217–224 (2009)

    ADS  CAS  Google Scholar 

  53. Jin, Z., Yao, J., Kittrell, C. & Tour, J. M. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5, 4112–4117 (2011)

    CAS  PubMed  Google Scholar 

  54. Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nature Mater. 9, 430–435 (2010)

    ADS  CAS  Google Scholar 

  55. Gamble, F. R. et al. Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174, 493–497 (1971)

    ADS  CAS  PubMed  Google Scholar 

  56. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)

    ADS  CAS  PubMed  Google Scholar 

  57. Addou, R., Dahal, A. & Batzill, M. Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene. Nature Nanotechnol. 8, 41–45 (2013)

    ADS  CAS  Google Scholar 

  58. Tusche, C., Meyerheim, H. L. & Kirschner, J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99, 026102 (2007)

    ADS  CAS  PubMed  Google Scholar 

  59. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    ADS  CAS  PubMed  Google Scholar 

  60. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    ADS  CAS  PubMed  Google Scholar 

  61. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol. 5, 574–578 (2010)

    ADS  CAS  Google Scholar 

  62. Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010)

    ADS  CAS  PubMed  Google Scholar 

  63. Kim, K. K. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161–166 (2012)

    ADS  PubMed  Google Scholar 

  64. Bresnehan, M. S. et al. Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices. ACS Nano 6, 5234–5241 (2012)

    CAS  PubMed  Google Scholar 

  65. Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013)

    CAS  PubMed  Google Scholar 

  66. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013)

    ADS  CAS  PubMed  Google Scholar 

  67. Ponomarenko, L. A. et al. Effect of a high-kappa environment on charge carrier mobility in graphene. Phys. Rev. Lett. 102, 206603 (2009)

    ADS  CAS  PubMed  Google Scholar 

  68. Yu, G. L. et al. Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl Acad. Sci. USA 110, 3282–3286 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012)

    ADS  CAS  PubMed  Google Scholar 

  70. Kotov, V. N., Pereira, V. M., Castro Neto, A. H. & Guinea, F. Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012)

    ADS  CAS  Google Scholar 

  71. Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)

    ADS  CAS  Google Scholar 

  72. McChesney, J. L. et al. Extended van Hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett. 104, 136803 (2010)

    ADS  CAS  PubMed  Google Scholar 

  73. Tutuc, E. & Kim, S. Magnetotransport and Coulomb drag in graphene double layers. Solid State Commun. 15, 1283–1288 (2012)

    Google Scholar 

  74. Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004)

    ADS  CAS  PubMed  Google Scholar 

  75. Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012)

    ADS  CAS  PubMed  Google Scholar 

  76. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013)

    ADS  CAS  PubMed  Google Scholar 

  77. Björkman, T., Gulans, A., Krasheninnikov, A. V. & Nieminen, R. M. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 108, 235502 (2012)

    ADS  PubMed  Google Scholar 

  78. Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nature Phys. 6, 109–113 (2010)

    ADS  Google Scholar 

  79. Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011)

    ADS  CAS  PubMed  Google Scholar 

  80. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys. 8, 382–386 (2012)

    ADS  CAS  Google Scholar 

  81. Dean, C. R. et al. Hofstadter’s butterfly and fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013)

    ADS  CAS  PubMed  Google Scholar 

  82. Kośmider, K. & Fernández-Rossier, J. Electronic properties of the MoS2-WS2 heterojunction. Phys. Rev. B 87, 075451 (2013)

    ADS  Google Scholar 

  83. Kim, K., Choi, J. Y., Kim, T., Cho, S. H. & Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011)

    ADS  CAS  PubMed  Google Scholar 

  84. Tanaka, T., Ito, A., Tajiima, A., Rokuta, E. & Oshima, C. Heteroepitaxial film of monolayer graphene/monolayer h-BN on Ni(111). Surf. Rev. Lett. 10, 721–726 (2003)

    ADS  CAS  Google Scholar 

  85. Yan, Z. et al. Growth of bilayer graphene on insulating substrates. ACS Nano 5, 8187–8192 (2011)

    CAS  PubMed  Google Scholar 

  86. Liu, Z. et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032–2037 (2011)

    ADS  CAS  PubMed  Google Scholar 

  87. Garcia, J. M. et al. Graphene growth on h-BN by molecular beam epitaxy. Solid State Commun. 152, 975–978 (2012)

    ADS  CAS  Google Scholar 

  88. Shi, Y. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012)

    ADS  CAS  PubMed  Google Scholar 

  89. Koma, A. Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72–76 (1992)

    ADS  CAS  Google Scholar 

  90. Ariga, K., Ji, Q., Hill, J. P., Bando, Y. & Aono, M. Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Mater. 4 e17 10.1038/am.2012.30 (2012)

    Article  CAS  Google Scholar 

  91. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012)

    ADS  CAS  PubMed  Google Scholar 

  92. Young, R. J., Kinloch, I. A., Gong, L. & Novoselov, K. S. The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol. 72, 1459–1476 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank all participants of the Friday Graphene Seminar in Manchester for discussions, and R. Gorbachev and J. Chapman for help with the figures. This work was supported by the Royal Society, the European Research Council, the Körber Foundation, the Office of Naval Research and the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

A.K.G. wrote a draft that was scrutinized and improved by both authors.

Corresponding author

Correspondence to I. V. Grigorieva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geim, A., Grigorieva, I. Van der Waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12385

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing