Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography

Abstract

Efficient carbon utilization is critical to the survival of microorganisms in competitive environments. To optimize energy usage, bacteria have developed an integrated control system to preferentially uptake carbohydrates that support rapid growth. The availability of a preferred carbon source, such as glucose, represses the synthesis and activities of proteins necessary for the transport and metabolism of secondary carbon sources. This regulatory phenomenon is defined as carbon catabolite repression1. In enteric bacteria, the key player of carbon catabolite repression is a component of the glucose-specific phosphotransferase system, enzyme IIA (EIIAGlc)1,2. It is known that unphosphorylated EIIAGlc binds to and inhibits a variety of transporters when glucose is available1,2. However, understanding the underlying molecular mechanism has been hindered by the complete absence of structures for any EIIAGlc–transporter complexes. Here we present the 3.9 Å crystal structure of Escherichia coli EIIAGlc in complex with the maltose transporter, an ATP-binding cassette (ABC) transporter. The structure shows that two EIIAGlc molecules bind to the cytoplasmic ATPase subunits, stabilizing the transporter in an inward-facing conformation and preventing the structural rearrangements necessary for ATP hydrolysis. We also show that the half-maximal inhibitory concentrations of the full-length EIIAGlc and an amino-terminal truncation mutant differ by 60-fold, consistent with the hypothesis that the amino-terminal region, disordered in the crystal structure, functions as a membrane anchor to increase the effective EIIAGlc concentration at the membrane3,4. Together these data suggest a model of how the central regulatory protein EIIAGlc allosterically inhibits maltose uptake in E. coli.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two orthogonal views of the EIIAGlc–MalFGK2 complex.
Figure 2: Binding of EIIAGlc prevents MalK closure.
Figure 3: The N terminus of EIIAGlc probably functions as a membrane anchor.
Figure 4: Inhibition of the maltose transporter by inducer exclusion.

Accession codes

Accessions

Protein Data Bank

Data deposits

Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 4JBW.

References

  1. Görke, B. & Stülke, J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Rev. Microbiol. 6, 613–624 (2008)

    Article  CAS  Google Scholar 

  2. Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, G., Peterkofsky, A. & Clore, G. M. A novel membrane anchor function for the N-terminal amphipathic sequence of the signal-transducing protein IIAGlucose of the Escherichia coli phosphotransferase system. J. Biol. Chem. 275, 39811–39814 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Wang, G., Keifer, P. A. & Peterkofsky, A. Solution structure of the N-terminal amphitropic domain of Escherichia coli glucose-specific enzyme IIA in membrane-mimetic micelles. Protein Sci. 12, 1087–1096 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hogema, B. M. et al. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol. Microbiol. 30, 487–498 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. Khare, D., Oldham, M. L., Orelle, C., Davidson, A. L. & Chen, J. Alternating access in maltose transporter mediated by rigid-body rotations. Mol. Cell 33, 528–536 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L. & Chen, J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Oldham, M. L. & Chen, J. Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332, 1202–1205 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965)

    Article  CAS  PubMed  Google Scholar 

  10. Chen, J., Lu, G., Lin, J., Davidson, A. L. & Quiocho, F. A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell 12, 651–661 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Dean, D. A., Reizer, J., Nikaido, H. & Saier, M. H., Jr Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes. J. Biol. Chem. 265, 21005–21010 (1990)

    Article  CAS  PubMed  Google Scholar 

  12. Kühnau, S., Reyes, M., Sievertsen, A., Shuman, H. A. & Boos, W. The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations. J. Bacteriol. 173, 2180–2186 (1991)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Worthylake, D. et al. Three-dimensional structure of the Escherichia coli phosphocarrier protein IIIglc. Proc. Natl Acad. Sci. USA 88, 10382–10386 (1991)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cai, M. et al. Solution structure of the phosphoryl transfer complex between the signal-transducing protein IIAGlucose and the cytoplasmic domain of the glucose transporter IICBGlucoseof the Escherichia coli glucose phosphotransferase system. J. Biol. Chem. 278, 25191–25206 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Hurley, J. H. et al. Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Science 259, 673–677 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wang, G. et al. Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIAglucose of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. EMBO J. 19, 5635–5649 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pelton, J. G., Torchia, D. A., Meadow, N. D. & Roseman, S. Structural comparison of phosphorylated and unphosphorylated forms of IIIGlc, a signal-transducing protein from Escherichia coli, using three-dimensional NMR techniques. Biochemistry 31, 5215–5224 (1992)

    Article  CAS  PubMed  Google Scholar 

  18. Dörschug, M., Frank, R., Kalbitzer, H. R., Hengstenberg, W. & Deutscher, J. Phosphoenolpyruvate-dependent phosphorylation site in enzyme IIIglc of the Escherichia coli phosphotransferase system. Eur. J. Biochem. 144, 113–119 (1984)

    Article  PubMed  Google Scholar 

  19. Blschke, B., Volkmer-Engert, R. & Schneider, E. Topography of the surface of the signal-transducing protein EIIAGlc that interacts with the MalK subunits of the maltose ATP-binding cassette transporter (MalFGK2) of Salmonella typhimurium. J. Biol. Chem. 281, 12833–12840 (2006)

    Article  CAS  Google Scholar 

  20. Stein, A. et al. Functional characterization of the maltose ATP-binding-cassette transporter of Salmonella typhimurium by means of monoclonal antibodies directed against the MalK subunit. Eur. J. Biochem. 269, 4074–4085 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Meadow, N. D. & Roseman, S. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific phosphocarrier protein (IIIGlc) from Salmonella typhimurium. J. Biol. Chem. 257, 14526–14537 (1982)

    Article  CAS  PubMed  Google Scholar 

  22. Meadow, N. D., Savtchenko, R. S., Remington, S. J. & Roseman, S. Effects of mutations and truncations on the kinetic behavior of IIAGlc, a phosphocarrier and regulatory protein of the phosphoenolpyruvate phosphotransferase system of Escherichia coli. J. Biol. Chem. 281, 11450–11455 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Misko, T. P., Mitchell, W. J., Meadow, N. D. & Roseman, S. Sugar transport by the bacterial phosphotransferase system. Reconstitution of inducer exclusion in Salmonella typhimurium membrane vesicles. J. Biol. Chem. 262, 16261–16266 (1987)

    Article  CAS  PubMed  Google Scholar 

  24. van der Vlag, J., van Dam, K. & Postma, P. W. Quantification of the regulation of glycerol and maltose metabolism by IIAGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system in Salmonella typhimurium. J. Bacteriol. 176, 3518–3526 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scholte, B. J., Schuitema, A. R. & Postma, P. W. Isolation of IIIGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system of Salmonella typhimurium. J. Bacteriol. 148, 257–264 (1981)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kadaba, N. S., Kaiser, J. T., Johnson, E., Lee, A. & Rees, D. C. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 321, 250–253 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gerber, S., Comellas-Bigler, M., Goetz, B. A. & Locher, K. P. Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 321, 246–250 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Osumi, T. & Saier, M. H., Jr Mechanism of regulation of the lactose permease by the phosphotransferase system in Escherichia coli: evidence for protein-protein interaction. Ann. Microbiol. 133, 269–273 (1982)

    CAS  Google Scholar 

  29. Osumi, T. & Saier, M. H., Jr Regulation of lactose permease activity by the phosphoenolpyruvate:sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease. Proc. Natl Acad. Sci. USA 79, 1457–1461 (1982)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saier, M. H., Jr, Novotny, M. J., Comeau-Fuhrman, D., Osumi, T. & Desai, J. D. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 155, 1351–1357 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ujwal, S. & Bowie, J. U. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 316, 1–6 (2002)

    Article  CAS  Google Scholar 

  32. Ujwal, R. & Abramson, J. High-throughput crystallization of membrane proteins using the lipidic bicelle method. J. Vis. Exp. 59, e3383 (2012)

    Google Scholar 

  33. Rossmann, M. G. The molecular replacement method. Acta Crystallogr. A 46, 73–82 (1990)

    Article  PubMed  Google Scholar 

  34. Collaborative Computational Project, 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  35. Schröder, G. F., Levitt, M. & Brunger, A. T. Super-resolution biomolecular crystallography with low-resolution data. Nature 464, 1218–1222 (2010)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  36. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  PubMed  Google Scholar 

  37. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alvarez, F. J., Orelle, C. & Davidson, A. L. Functional reconstitution of an ABC transporter in nanodiscs for use in electron paramagnetic resonance spectroscopy. J. Am. Chem. Soc. 132, 9513–9515 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scharschmidt, B. F., Keeffe, E. B., Blankenship, N. M. & Ockner, R. K. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity. J. Lab. Clin. Med. 93, 790–799 (1979)

    CAS  PubMed  Google Scholar 

  41. Orelle, C., Ayvaz, T., Everly, R. M., Klug, C. S. & Davidson, A. L. Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter. Proc. Natl Acad. Sci. USA 105, 12837–12842 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Advance Photon Source GM/CA-CAT, NE-CAT and SBC for assistance with data collection. This work was supported by a National Institutes of Health grant (GM070515 to J.C. and A.L.D.).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the study and analysed the data. S.C. crystallized the complex and performed the biochemical experiments. S.C. and M.L.O. determined the crystal structure and made the figures. J.C. wrote the manuscript with inputs from all authors.

Corresponding author

Correspondence to Jue Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4, Supplementary Table 1 and Supplementary References. (PDF 3300 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Oldham, M., Davidson, A. et al. Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 499, 364–368 (2013). https://doi.org/10.1038/nature12232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12232

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing