Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temporal patterning of Drosophila medulla neuroblasts controls neural fates

Abstract

In the Drosophila optic lobes, the medulla processes visual information coming from inner photoreceptors R7 and R8 and from lamina neurons. It contains approximately 40,000 neurons belonging to more than 70 different types. Here we describe how precise temporal patterning of neural progenitors generates these different neural types. Five transcription factors—Homothorax, Eyeless, Sloppy paired, Dichaete and Tailless—are sequentially expressed in a temporal cascade in each of the medulla neuroblasts as they age. Loss of Eyeless, Sloppy paired or Dichaete blocks further progression of the temporal sequence. We provide evidence that this temporal sequence in neuroblasts, together with Notch-dependent binary fate choice, controls the diversification of the neuronal progeny. Although a temporal sequence of transcription factors had been identified in Drosophila embryonic neuroblasts, our work illustrates the generality of this strategy, with different sequences of transcription factors being used in different contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The developing medulla.
Figure 2: A temporal sequence of transcription factors in medulla neuroblasts.
Figure 3: Cross-regulations between transcription factors in the gene cascade.
Figure 4: Notch-dependent asymmetric division of medulla GMCs.
Figure 5: Hth and Ey are required for neuronal diversity.
Figure 6: Slp is required for neuronal diversity.

Similar content being viewed by others

References

  1. Livesey, F. J. & Cepko, C. L. Vertebrate neural cell-fate determination: lessons from the retina. Nature Rev. Neurosci. 2, 109–118 (2001)

    Article  CAS  Google Scholar 

  2. Molyneaux, B. J., Arlotta, P., Menezes, J. R. & Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nature Rev. Neurosci. 8, 427–437 (2007)

    Article  CAS  Google Scholar 

  3. Jacob, J., Maurange, C. & Gould, A. P. Temporal control of neuronal diversity: common regulatory principles in insects and vertebrates? Development 135, 3481–3489 (2008)

    Article  CAS  Google Scholar 

  4. Okano, H. & Temple, S. Cell types to order: temporal specification of CNS stem cells. Curr. Opin. Neurobiol. 19, 112–119 (2009)

    Article  CAS  Google Scholar 

  5. Lee, T., Lee, A. & Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065–4076 (1999)

    CAS  PubMed  Google Scholar 

  6. Akiyama-Oda, Y., Hosoya, T. & Hotta, Y. Asymmetric cell division of thoracic neuroblast 6–4 to bifurcate glial and neuronal lineage in Drosophila. Development 126, 1967–1974 (1999)

    CAS  PubMed  Google Scholar 

  7. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001)

    Article  CAS  Google Scholar 

  8. Pearson, B. J. & Doe, C. Q. Regulation of neuroblast competence in Drosophila. Nature 425, 624–628 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Baumgardt, M., Karlsson, D., Terriente, J., Diaz-Benjumea, F. J. & Thor, S. Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 139, 969–982 (2009)

    Article  CAS  Google Scholar 

  10. Yu, H. H., Chen, C. H., Shi, L., Huang, Y. & Lee, T. Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nature Neurosci. 12, 947–953 (2009)

    Article  CAS  Google Scholar 

  11. Kambadur, R. et al. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev. 12, 246–260 (1998)

    Article  CAS  Google Scholar 

  12. Brody, T. & Odenwald, W. F. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol. 226, 34–44 (2000)

    Article  CAS  Google Scholar 

  13. Grosskortenhaus, R., Pearson, B. J., Marusich, A. & Doe, C. Q. Regulation of temporal identity transitions in Drosophila neuroblasts. Dev. Cell 8, 193–202 (2005)

    Article  CAS  Google Scholar 

  14. Novotny, T., Eiselt, R. & Urban, J. Hunchback is required for the specification of the early sublineage of neuroblast 7–3 in the Drosophila central nervous system. Development 129, 1027–1036 (2002)

    CAS  PubMed  Google Scholar 

  15. Grosskortenhaus, R., Robinson, K. J. & Doe, C. Q. Pdm and Castor specify late-born motor neuron identity in the neuroblast7–1 lineage. Genes Dev. 20, 2618–2627 (2006)

    Article  CAS  Google Scholar 

  16. Cleary, M. D. & Doe, C. Q. Regulation of neuroblast competence: multiple temporal identity factors specify distinct neuronal fates within a single early competence window. Genes Dev. 20, 429–434 (2006)

    Article  CAS  Google Scholar 

  17. Tran, K. D. & Doe, C. Q. Pdm and Castor close successive temporal identity windows in the neuroblast3–1 lineage. Development 135, 3491–3499 (2008)

    Article  CAS  Google Scholar 

  18. Kao, C. F., Yu, H. H., He, Y., Kao, J. C. & Lee, T. Hierarchical deployment of factors regulating temporal fate in a diverse neuronal lineage of the Drosophila central brain. Neuron 73, 677–684 (2012)

    Article  CAS  Google Scholar 

  19. Elliott, J., Jolicoeur, C., Ramamurthy, V. & Cayouette, M. Ikaros confers early temporal competence to mouse retinal progenitor cells. Neuron 60, 26–39 (2008)

    Article  CAS  Google Scholar 

  20. Fischbach, K.-F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989)

    Article  Google Scholar 

  21. Morante, J. & Desplan, C. The color-vision circuit in the medulla of Drosophila. Curr. Biol. 18, 553–565 (2008)

    Article  CAS  Google Scholar 

  22. Egger, B., Boone, J. Q., Stevens, N. R., Brand, A. H. & Doe, C. Q. Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev. 2, 1 (2007)

    Article  Google Scholar 

  23. Yasugi, T., Umetsu, D., Murakami, S., Sato, M. & Tabata, T. Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 135, 1471–1480 (2008)

    Article  CAS  Google Scholar 

  24. Yasugi, T., Sugie, A., Umetsu, D. & Tabata, T. Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 137, 3193–3203 (2010)

    Article  CAS  Google Scholar 

  25. Reddy, B. V., Rauskolb, C. & Irvine, K. D. Influence of Fat-Hippo and Notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development 137, 2397–2408 (2010)

    Article  CAS  Google Scholar 

  26. Egger, B., Gold, K. S. & Brand, A. H. Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development 137, 2981–2987 (2010)

    Article  CAS  Google Scholar 

  27. Ngo, K. T. et al. Concomitant requirement for Notch and Jak/Stat signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Dev. Biol. 346, 284–295 (2010)

    Article  CAS  Google Scholar 

  28. Nassif, C., Noveen, A. & Hartenstein, V. Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J. Comp. Neurol. 455, 417–434 (2003)

    Article  Google Scholar 

  29. Ceron, J., Gonzalez, C. & Tejedor, F. J. Patterns of cell division and expression of asymmetric cell fate determinants in postembryonic neuroblast lineages of Drosophila. Dev. Biol. 230, 125–138 (2001)

    Article  CAS  Google Scholar 

  30. Morante, J., Erclik, T. & Desplan, C. Cell migration in Drosophila optic lobe neurons is controlled by eyeless/Pax6. Development 138, 687–693 (2011)

    Article  CAS  Google Scholar 

  31. Hasegawa, E. et al. Concentric zones, cell migration and neuronal circuits in the Drosophila visual center. Development 138, 983–993 (2011)

    Article  CAS  Google Scholar 

  32. Grossniklaus, U., Pearson, R. K. & Gehring, W. J. The Drosophila sloppy paired locus encodes two proteins involved in segmentation that show homology to mammalian transcription factors. Genes Dev. 6, 1030–1051 (1992)

    Article  CAS  Google Scholar 

  33. Sato, A. & Tomlinson, A. Dorsal–ventral midline signaling in the developing Drosophila eye. Development 134, 659–667 (2007)

    Article  CAS  Google Scholar 

  34. Maurange, C., Cheng, L. & Gould, A. P. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133, 891–902 (2008)

    Article  CAS  Google Scholar 

  35. Soustelle, L. & Giangrande, A. Novel gcm-dependent lineages in the postembryonic nervous system of Drosophila melanogaster. Dev. Dyn. 236, 2101–2108 (2007)

    Article  CAS  Google Scholar 

  36. Colonques, J., Ceron, J. & Tejedor, F. J. Segregation of postembryonic neuronal and glial lineages inferred from a mosaic analysis of the Drosophila larval brain. Mech. Dev. 124, 327–340 (2007)

    Article  CAS  Google Scholar 

  37. Skeath, J. B. & Doe, C. Q. Sanpodo and Notch act in opposition to Numb to distinguish sibling neuron fates in the Drosophila CNS. Development 125, 1857–1865 (1998)

    CAS  PubMed  Google Scholar 

  38. Truman, J. W., Moats, W., Altman, J., Marin, E. C. & Williams, D. W. Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster. Development 137, 53–61 (2010)

    Article  CAS  Google Scholar 

  39. Lin, S. et al. Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain. Development 137, 43–51 (2010)

    Article  ADS  CAS  Google Scholar 

  40. Hasegawa, E., Kaido, M., Takayama, R. & Sato, M. Brain-specific-homeobox is required for the specification of neuronal types in the Drosophila optic lobe. Dev. Biol. 1, 90–99 (2013)

    Article  Google Scholar 

  41. Kohwi, M., Lupton, J. R., Lai, S. L., Miller, M. R. & Doe, C. Q. Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell 152, 97–108 (2013)

    Article  CAS  Google Scholar 

  42. Hanashima, C., Li, S. C., Shen, L., Lai, E. & Fishell, G. Foxg1 suppresses early cortical cell fate. Science 303, 56–59 (2004)

    Article  ADS  CAS  Google Scholar 

  43. Kosman, D., Small, S. & Reinitz, J. Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins. Dev. Genes Evol. 208, 290–294 (1998)

    Article  CAS  Google Scholar 

  44. Roy, S. et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010)

    Article  ADS  CAS  Google Scholar 

  45. Morante, J. & Desplan, C. Dissection and staining of Drosophila optic lobes at different stages of development. Cold Spring Harb. Protoc. 2011, 653–656 (2011)

    Article  Google Scholar 

  46. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994)

    Article  CAS  Google Scholar 

  47. Cohen, B., McGuffin, M. E., Pfeifle, C., Segal, D. & Cohen, S. M. apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes Dev. 6, 715–729 (1992)

    Article  CAS  Google Scholar 

  48. Evans, C. J. et al. G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nature Methods 6, 603–605 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the fly community and the modENCODE team for gifts of antibodies and fly stocks. K. White, N. Negre, D. Vasiliauskas and R. Johnston contributed to screening the modENCODE antibodies. Special thanks to C.-H. Lee for sharing unpublished information and the OrtC1-gal4 line. We thank R. Mann for suggestions and reagents; and Desplan laboratory members for discussion and support, especially R. Johnston, D. Vasiliauskas and N. Neriec for critically reading the manuscript. This work was supported by National Institutes of Health (NIH) grant R01 Ey017916 to C.D.; The Robert Leet and Clara Guthrie Patterson Trust Postdoctoral Fellowship to X.L.; The Canadian Institutes of Health Research (CIHR) to T.E.; fellowships from EMBO (ALTF 680-2009) and HFSPO (LT000077/2010-L) to C.B.; NIH grant GM058575 and a Career Development fellowship from the Leukemia and Lymphoma Society to R.V.

Author information

Authors and Affiliations

Authors

Contributions

C.D. planned the project and analysed the data together with X.L. and T.E.; T.E., X.L. and C.B. performed the antibody screen; X.L. conducted experiments with Hth, Ey, Slp and Tll neuroblasts as well as Ap and the Notch pathway; T.E. analysed the D neuroblasts; Z.C. generated the OrtC1-gal4 flip-out and MARCM clones; R.V. generated the ey BAC rescue construct and stocks; S.V. examined Slp2 expression; A.C. identified the AC225-gal4 line and J.M. defined its expression in the transition from neuroepithelium to neuroblast. The manuscript was written by X.L. and C.D., and all authors commented on it.

Corresponding author

Correspondence to Claude Desplan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-4. (PDF 10110 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Erclik, T., Bertet, C. et al. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498, 456–462 (2013). https://doi.org/10.1038/nature12319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12319

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing