Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entanglement between light and an optical atomic excitation

Abstract

The generation, distribution and control of entanglement across quantum networks is one of the main goals of quantum information science1,2. In previous studies, hyperfine ground states of single atoms or atomic ensembles have been entangled with spontaneously emitted light3,4,5,6. The probabilistic character of the spontaneous emission process leads to long entanglement generation times, limiting realized network implementations to just two nodes7,8,9,10. The success probability for atom–photon entanglement protocols can be increased by confining a single atom in a high-finesse optical cavity11,12. Alternatively, quantum networks with superior scaling properties could be achieved using entanglement between light fields and atoms in quantum superpositions of the ground and highly excited (Rydberg) electronic states2,13,14. Here we report the generation of such entanglement. The dephasing of the optical atomic coherence is inhibited by state-insensitive confinement of both the ground and Rydberg states of an ultracold atomic gas in an optical lattice15. Our results pave the way for functional, many-node quantum networks capable of deterministic quantum logic operations between long-lived atomic memories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the entanglement protocol.
Figure 2: State-insensitive optical trapping.
Figure 3: Hong-Ou-Mandel interference between single-photon and coherent fields.
Figure 4: Atom–light entanglement.

Similar content being viewed by others

References

  1. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013)

    Article  ADS  CAS  Google Scholar 

  4. Matsukevich, D. N. & Kuzmich, A. Quantum state transfer between matter and light. Science 306, 663–666 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Volz, J. et al. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)

    Article  ADS  Google Scholar 

  6. Simon, J., Tanji, H., Ghosh, S. & Vuletic, V. Single-photon bus connecting spin-wave quantum memories. Nature Phys. 3, 765–769 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005)

    Article  ADS  Google Scholar 

  8. Eisaman, M. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Matsukevich, D. N. et al. Entanglement of remote atomic qubits. Phys. Rev. Lett. 96, 030405 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012)

    Article  ADS  CAS  Google Scholar 

  11. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)

    Article  ADS  CAS  Google Scholar 

  12. Stute, A. et al. Tunable ion-photon entanglement in an optical cavity. Nature 485, 482–485 (2012)

    Article  ADS  CAS  Google Scholar 

  13. Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Saffman, M. & Walker, T. G. Creating single-atom and single-photon sources from entangled atomic ensembles. Phys. Rev. A 66, 065403 (2002)

    Article  ADS  Google Scholar 

  15. Saffman, M. & Walker, T. G. Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A 72, 022347 (2005)

    Article  ADS  Google Scholar 

  16. Acín, A., Cirac, J. I. & Lewenstein, M. Entanglement percolation in quantum networks. Nature Phys. 3, 256–259 (2007)

    Article  ADS  Google Scholar 

  17. Gallagher, T. F. Rydberg Atoms (Cambridge Univ. Press, 1994)

    Book  Google Scholar 

  18. Urban, E. et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110–114 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Gaëtan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5, 115–118 (2009)

    Article  ADS  Google Scholar 

  20. Zhao, B., Mueller, M., Hammerer, K. & Zoller, P. Efficient quantum repeater based on deterministic Rydberg gates. Phys. Rev. A 81, 052329 (2010)

    Article  ADS  Google Scholar 

  21. Brion, E., Carlier, F., Akulin, V. M. & Mølmer, K. Quantum repeater with Rydberg-blocked atomic ensembles in fiber-coupled cavities. Phys. Rev. A 85, 042324 (2012)

    Article  ADS  Google Scholar 

  22. Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012)

    Article  ADS  CAS  Google Scholar 

  24. Dudin, Y. O., Li, L., Bariani, F. & Kuzmich, A. Observation of coherent many-body Rabi oscillations. Nature Phys. 8, 790–794 (2012)

    Article  ADS  CAS  Google Scholar 

  25. Dudin, Y. O., Bariani, F. & Kuzmich, A. Emergence of spatial spin-wave correlations in a cold atomic gas. Phys. Rev. Lett. 109, 133602 (2012)

    Article  ADS  CAS  Google Scholar 

  26. Schauß, P. et al. Observation of spatially ordered structures in a two-dimensional Rydberg gas. Nature 491, 87–91 (2012)

    Article  ADS  Google Scholar 

  27. Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012)

    Article  ADS  CAS  Google Scholar 

  28. Maxwell, D. T. et al. Storage and control of optical photons using Rydberg polaritons. Phys. Rev. Lett. 110, 103001 (2013)

    Article  ADS  CAS  Google Scholar 

  29. Anderson, S. E., Younge, K. C. & Raithel, G. Trapping Rydberg atoms in an optical lattice. Phys. Rev. Lett. 107, 263001 (2011)

    Article  ADS  CAS  Google Scholar 

  30. Tan, S. M., Walls, D. F. & Collett, M. J. Nonlocality of a single photon. Phys. Rev. Lett. 66, 252–255 (1991)

    Article  ADS  CAS  Google Scholar 

  31. Dudin, Y. O., Li, L. & Kuzmich, A. Light storage on the minute scale. Phys. Rev. A 87, 031801(R) (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Atomic Physics Program and the Quantum Memories MURI of the Air Force Office of Scientific Research and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to all aspects of this work.

Corresponding author

Correspondence to A. Kuzmich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data and Supplementary Figures 1-3. (PDF 344 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Dudin, Y. & Kuzmich, A. Entanglement between light and an optical atomic excitation. Nature 498, 466–469 (2013). https://doi.org/10.1038/nature12227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12227

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing