Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the integral membrane diacylglycerol kinase

Abstract

Diacylglycerol kinase catalyses the ATP-dependent phosphorylation of diacylglycerol to phosphatidic acid for use in shuttling water-soluble components to membrane-derived oligosaccharide and lipopolysaccharide in the cell envelope of Gram-negative bacteria1. For half a century, this 121-residue kinase has served as a model for investigating membrane protein enzymology1,2,3,4,5,6, folding7,8, assembly9,10,11,12 and stability1,13. Here we present crystal structures for three functional forms of this unique and paradigmatic kinase, one of which is wild type. These reveal a homo-trimeric enzyme with three transmembrane helices and an amino-terminal amphiphilic helix per monomer. Bound lipid substrate and docked ATP identify the putative active site that is of the composite, shared site type. The crystal structures rationalize extensive biochemical and biophysical data on the enzyme. They are, however, at variance with a published solution NMR model14 in that domain swapping, a key feature of the solution form, is not observed in the crystal structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of Δ4 DgkA.
Figure 2: Rationalizing functional biochemistry with the crystal structure of DgkA.
Figure 3: Putative active site of DgkA complete with lipid and Mg2+-ATP substrates and activating zinc.
Figure 4: Comparison of the crystal and solution NMR structures of DgkA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for wild-type, Δ4 and Δ7 DgkA are deposited in the Protein Data Bank under accession codes 3ZE4, 3ZE5 and 3ZE3, respectively.

References

  1. Van Horn, W. D. & Sanders, C. R. Prokaryotic diacylglycerol kinase and undecaprenol kinase. Annu. Rev. Biophys. 41, 81–101 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Schneider, E. G. & Kennedy, E. P. Phosphorylation of ceramide by diglyceride kinase preparations from Escherichia coli. J. Biol. Chem. 248, 3739–3741 (1973)

    Article  CAS  PubMed  Google Scholar 

  3. Badola, P. & Sanders, C. R. Escherichia coli diacylglycerol kinase is an evolutionarily optimized membrane enzyme and catalyzes direct phosphoryl transfer. J. Biol. Chem. 272, 24176–24182 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. Lau, F. W., Chen, X. & Bowie, J. U. Active sites of diacylglycerol kinase from Escherichia coli are shared between subunits. Biochemistry 38, 5521–5527 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Pilot, J. D., East, J. M. & Lee, A. G. Effects of bilayer thickness on the activity of diacylglycerol kinase of Escherichia coli. Biochemistry 40, 8188–8195 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Lahiri, S., Brehs, M., Olschewski, D. & Becker, C. F. Total chemical synthesis of an integral membrane enzyme: diacylglycerol kinase from Escherichia coli. Angew. Chem. Int. Edn Engl. 50, 3988–3992 (2011)

    Article  CAS  Google Scholar 

  7. Sanders, C. R. et al. Escherichia coli diacylglycerol kinase is an alpha-helical polytopic membrane protein and can spontaneously insert into preformed lipid vesicles. Biochemistry 35, 8610–8618 (1996)

    Article  CAS  PubMed  Google Scholar 

  8. Gorzelle, B. M. et al. Reconstitutive refolding of diacylglycerol kinase, an integral membrane protein. Biochemistry 38, 16373–16382 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Vinogradova, O., Badola, P., Czerski, L., Sonnichsen, F. D. & Sanders, C. R. Escherichia coli diacylglycerol kinase: a case study in the application of solution NMR methods to an integral membrane protein. Biophys. J. 72, 2688–2701 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagy, J. K., Lau, F. W., Bowie, J. U. & Sanders, C. R. Mapping the oligomeric interface of diacylglycerol kinase by engineered thiol cross-linking: homologous sites in the transmembrane domain. Biochemistry 39, 4154–4164 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Wen, J., Chen, X. & Bowie, J. U. Exploring the allowed sequence space of a membrane protein. Nature Struct. Biol. 3, 141–148 (1996)

    Article  CAS  PubMed  Google Scholar 

  12. Smith, R. L., O’Toole, J. F., Maguire, M. E. & Sanders, C. R. Membrane topology of Escherichia coli diacylglycerol kinase. J. Bacteriol. 176, 5459–5465 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, Y. & Bowie, J. U. Building a thermostable membrane protein. J. Biol. Chem. 275, 6975–6979 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. Van Horn, W. D. et al. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324, 1726–1729 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lorch, M. et al. How to prepare membrane proteins for solid-state NMR: A case study on the α-helical integral membrane protein diacylglycerol kinase from E. coli. ChemBioChem 6, 1693–1700 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Caffrey, M., Li, D. & Dukkipati, A. Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 51, 6266–6288 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. Caffrey, M., Lyons, J., Smyth, T. & Hart, D. J. Monoacylglycerols: The workhorse lipids for crystallizing membrane proteins in mesophases. Curr. Top. Membr. 63, 83–108 (2009)

    Article  CAS  Google Scholar 

  18. Li, D., Shah, S. T. A. & Caffrey, M. Host lipid and temperature as important screening variables for crystallizing integral membrane proteins in lipidic mesophases. Trials with diacylglycerol kinase. Cryst. Growth Des http://dx.doi.org/10.1021/cg400254v (2013)

  19. Walsh, J. P., Fahrner, L. & Bell, R. M. sn-1,2-diacylglycerol kinase of Escherichia coli. Diacylglycerol analogues define specificity and mechanism. J. Biol. Chem. 265, 4374–4381 (1990)

    Article  CAS  PubMed  Google Scholar 

  20. Bohnenberger, E. & Sandermann, H., Jr Lipid dependence of diacylglycerol kinase from Escherichia coli. Eur. J. Biochem. 132, 645–650 (1983)

    Article  CAS  PubMed  Google Scholar 

  21. Li, D. & Caffrey, M. Lipid cubic phase as a membrane mimetic for integral membrane protein enzymes. Proc. Natl Acad. Sci. USA 108, 8639–8644 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matte, A. & Delbaere, L. T. J. ATP-binding motifs. eLShttp://dx.doi.org/10.1002/9780470015902.a0003050.pub2 (2010)

  23. Krissinel, E. On the relationship between sequence and structure similarities in proteomics. Bioinformatics 23, 717–723 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Ullrich, S. J., Hellmich, U. A., Ullrich, S. & Glaubitz, C. Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR. Nature Chem. Biol. 7, 263–270 (2011)

    Article  CAS  Google Scholar 

  25. Walsh, J. P. & Bell, R. M. sn-1,2-diacylglycerol kinase of Escherichia coli. Mixed micellar analysis of the phospholipid cofactor requirement and divalent cation dependence. J. Biol. Chem. 261, 6239–6247 (1986)

    Article  CAS  PubMed  Google Scholar 

  26. Martin, J. W., Yan, A. K., Bailey-Kellogg, C., Zhou, P. & Donald, B. R. A geometric arrangement algorithm for structure determination of symmetric protein homo-oligomers from NOEs and RDCs. J. Comput. Biol. 18, 1507–1523 (2011)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin, J. W., Yan, A. K., Bailey-Kellogg, C., Zhou, P. & Donald, B. R. A graphical method for analyzing distance restraints using residual dipolar couplings for structure determination of symmetric protein homo-oligomers. Protein Sci. 20, 970–985 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, 370–376 (2012)

    Article  CAS  Google Scholar 

  29. Doublié, S. Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems. Methods Mol. Biol. 363, 91–108 (2007)

    Article  PubMed  Google Scholar 

  30. Caffrey, M. & Porter, C. Crystallizing membrane proteins for structure determination using lipidic mesophases. J. Vis. Exp. 45, e1712 (2010)

    Google Scholar 

  31. Li, D., Boland, C., Walsh, K. & Caffrey, M. Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases. J. Vis. Exp. 67, e4000 (2012)

    Google Scholar 

  32. Li, D., Boland, C., Aragao, D., Walsh, K. & Caffrey, M. Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography. J. Vis. Exp. 67, e4001 (2012)

    Google Scholar 

  33. Fischetti, R. F. et al. Mini-beam collimator enables microcrystallography experiments on standard beamlines. J. Synchrotron Radiat. 16, 217–225 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Evans, G., Axford, D. & Owen, R. L. The design of macromolecular crystallography diffraction experiments. Acta Crystallogr. D 67, 261–270 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cherezov, V. et al. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 µm size X-ray synchrotron beam. J. R. Soc. Interface 6 (suppl. 5). S587–S597 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010)

    Article  CAS  Google Scholar 

  37. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)

    Article  PubMed  CAS  Google Scholar 

  39. Stokes-Rees, I. & Sliz, P. Protein structure determination by exhaustive search of Protein Data Bank derived databases. Proc. Natl. Acad. Sci. USA 107, 21476–21481 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Long, F., Vagin, A. A., Young, P. & Murshudov, G. N. BALBES: a molecular-replacement pipeline. Acta Crystallogr. D 64, 125–132 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. Hendrickson, W. A., Horton, J. R. & LeMaster, D. M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D 66, 479–485 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Painter, J. & Merritt, E. A. TLSMD web server for the generation of multi-group TLS models. J. Appl. Crystallogr. 39, 109–111 (2006)

    Article  CAS  Google Scholar 

  46. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  48. Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D 60, 2210–2221 (2004)

    Article  CAS  PubMed  Google Scholar 

  49. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Diller, D. J. & Merz, K. M., Jr High throughput docking for library design and library prioritization. Proteins 43, 113–124 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Science Foundation Ireland (grants 07/IN.1/B1836 and 12/IA/1255) and the National Institutes of Health (grants GM75915, P50GM073210, U54GM094599) and FP7 (COST CM0902). We thank C. R. Sanders for providing E. coli strain WH1061 and for his collegiality. The assistance and support of beamline scientists at the Advanced Photon Source (23-ID) and Diamond Light Source (I24) are gratefully acknowledged. We thank R. Sanishvili for assistance with zinc analysis, C. Boland and J. Tan for help with diffraction data collection, and A. Coughlan for help with lipid synthesis.

Author information

Authors and Affiliations

Authors

Contributions

D.L. produced, purified, crystallized and functionally characterized the protein and its variants, collected and processed diffraction data, refined and analysed the structures, and helped write the manuscript. J.A.L., D.A. and V.E.P. collected and processed data, solved, refined and analysed the structures, and helped write the manuscript. L.V. helped process data, solve and analyse structures and write the manuscript. M.A., C.D. and V.E.P. helped with protein and crystal production. C.P.K. performed docking. S.T.A.S. provided 7.8 MAG for crystallization. M.C. was responsible for the overall project strategy and management and oversaw manuscript preparation.

Corresponding author

Correspondence to Martin Caffrey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Tables 1-2, Supplementary Figures 1-15 and additional references. (PDF 2723 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Lyons, J., Pye, V. et al. Crystal structure of the integral membrane diacylglycerol kinase. Nature 497, 521–524 (2013). https://doi.org/10.1038/nature12179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12179

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing