Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atmospheric confinement of jet streams on Uranus and Neptune

Abstract

The observed cloud-level atmospheric circulation on the outer planets of the Solar System is dominated by strong east–west jet streams. The depth of these winds is a crucial unknown in constraining their overall dynamics, energetics and internal structures. There are two approaches to explaining the existence of these strong winds. The first suggests that the jets are driven by shallow atmospheric processes near the surface1,2,3, whereas the second suggests that the atmospheric dynamics extend deeply into the planetary interiors4,5. Here we report that on Uranus and Neptune the depth of the atmospheric dynamics can be revealed by the planets’ respective gravity fields. We show that the measured fourth-order gravity harmonic, J4, constrains the dynamics to the outermost 0.15 per cent of the total mass of Uranus and the outermost 0.2 per cent of the total mass of Neptune. This provides a stronger limit to the depth of the dynamical atmosphere than previously suggested6, and shows that the dynamics are confined to a thin weather layer no more than about 1,000 kilometres deep on both planets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed cloud-level zonally averaged zonal winds on Uranus and Neptune.
Figure 2: over a wide range of interior models for Neptune.
Figure 3: Radial density profiles for two different interior models of Uranus and Neptune.
Figure 4: as function of the decay height H for Uranus and Neptune.

Similar content being viewed by others

References

  1. Read, P. L. Clearer circulation on Uranus. Nature 325, 197–198 (1987)

    Article  ADS  Google Scholar 

  2. Lian, Y. & Showman, A. P. Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus 207, 373–393 (2010)

    Article  ADS  Google Scholar 

  3. Liu, J. & Schneider, T. Mechanisms of jet formation on the giant planets. J. Atmos. Sci. 67, 3652–3672 (2010)

    Article  ADS  Google Scholar 

  4. Suomi, V. E., Limaye, S. S. & Johnson, D. R. High winds of Neptune — a possible mechanism. Science 251, 929–932 (1991)

    Article  CAS  ADS  Google Scholar 

  5. Aurnou, J., Heimpel, M. & Wicht, J. The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus 190, 110–126 (2007)

    Article  ADS  Google Scholar 

  6. Hubbard, W. B. et al. Interior structure of Neptune — comparison with Uranus. Science 253, 648–651 (1991)

    Article  CAS  ADS  Google Scholar 

  7. Hubbard, W. B. Gravitational signature of Jupiter’s deep zonal flows. Icarus 137, 357–359 (1999)

    Article  ADS  Google Scholar 

  8. Kaspi, Y., Hubbard, W. B., Showman, A. P. & Flierl, G. R. Gravitational signature of Jupiter’s internal dynamics. Geophys. Res. Lett. 37 L01204 (2010)

  9. Kong, D., Zhang, K. & Schubert, G. On the variation of zonal gravity coefficients of a giant planet caused by its deep zonal flows. Astrophys. J. 748, 143 (2012)

    Article  ADS  Google Scholar 

  10. Kaspi, Y. Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics. Geophys. Res. Lett. 40, 676–680 (2013)

    Article  ADS  Google Scholar 

  11. Hubbard, W. B. Planetary Interiors (Van Nostrand Reinhold, 1984)

    Google Scholar 

  12. Zharkov, V. N. & Trubitsyn, V. P. Physics of Planetary Interiors (Pachart Publishing House, 1978)

    Google Scholar 

  13. Helled, R., Anderson, J. D., Podolak, M. & Schubert, G. Interior models of Uranus and Neptune. Astrophys. J. 726, 15 (2011)

    Article  ADS  Google Scholar 

  14. Jacobson, R. A. The gravity field of the Uranian system and the orbits of the Uranian satellites and rings. Bull. Am. Astron. Soc. 39 (3). 453–453 (2007)

    ADS  Google Scholar 

  15. Jacobson, R. A. The orbits of the Neptunian satellites and the orientation of the pole of Neptune. Astrophys. J. 137, 4322–4329 (2009)

    ADS  Google Scholar 

  16. Hubbard, W. B. & Marley, M. S. Optimized Jupiter, Saturn, and Uranus interior models. Icarus 78, 102–118 (1989)

    Article  CAS  ADS  Google Scholar 

  17. Podolak, M., Weizman, A. & Marley, M. Comparative models of Uranus and Neptune. Planet. Space Sci. 43, 1517–1522 (1995)

    Article  ADS  Google Scholar 

  18. Fortney, J. J. & Nettelmann, N. The interior structure, composition, and evolution of giant planets. Space Sci. Rev. 152, 423–447 (2010)

    Article  CAS  ADS  Google Scholar 

  19. Nettelmann, N., Helled, R., Fortney, J. J. & Redmer, R. New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data. Planet. Space Sci. 77, 143–151 (2013)

    Article  ADS  Google Scholar 

  20. Kaspi, Y., Flierl, G. R. & Showman, A. P. The deep wind structure of the giant planets: results from an anelastic general circulation model. Icarus 202, 525–542 (2009)

    Article  ADS  Google Scholar 

  21. Schneider, T. & Liu, J. Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci. 66, 579–601 (2009)

    Article  ADS  Google Scholar 

  22. Liu, J., Goldreich, P. M. & Stevenson, D. J. Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196, 653–664 (2008)

    Article  ADS  Google Scholar 

  23. Pedlosky, J. Geophysical Fluid Dynamics (Spinger, 1987)

    Book  Google Scholar 

  24. Pearl, J. C. & Conrath, B. J. The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data. J. Geophys. Res. 96, 18921–18930 (1991)

    Article  ADS  Google Scholar 

  25. Helled, R., Anderson, J. D. & Schubert, G. Uranus and Neptune: shape and rotation. Icarus 210, 446–454 (2010)

    Article  ADS  Google Scholar 

  26. Karkoschka, E. Neptune’s rotational period suggested by the extraordinary stability of two features. Icarus 215, 439–448 (2011)

    Article  ADS  Google Scholar 

  27. Hammel, H. B., de Pater, I., Gibbard, S., Lockwood, G. W. & Rages, K. Uranus in 2003: zonal winds, banded structure, and discrete features. Icarus 175, 534–545 (2005)

    Article  ADS  Google Scholar 

  28. Sromovsky, L. A. & Fry, P. M. Dynamics of cloud features on Uranus. Icarus 179, 459–484 (2005)

    Article  ADS  Google Scholar 

  29. Sromovsky, L. A., Limaye, S. S. & Fry, P. M. Dynamics of Neptune’s major cloud features. Icarus 105, 110–141 (1993)

    Article  ADS  Google Scholar 

  30. Sromovsky, L. A., Fry, P. M., Dowling, T. E., Baines, K. H. & Limaye, S. S. Neptune’s atmospheric circulation and cloud morphology: changes revealed by 1998 HST imaging. Icarus 150, 244–260 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Y.K. and O.A. thank the Helen Kimmel Center for Planetary Science at the Weizmann Institute of Science for support. A.P.S. and W.B.H. acknowledge support by NASA.

Author information

Authors and Affiliations

Authors

Contributions

Y.K. and A.P.S. initiated and designed the research. Y.K. performed the dynamical gravity harmonics calculations and wrote the paper. R.H. performed the static interior model calculations and their interpretation. All authors contributed to the discussion of the results.

Corresponding author

Correspondence to Yohai Kaspi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-2, Supplementary Table 1, Supplementary Figure 1 and additional references. (PDF 228 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaspi, Y., Showman, A., Hubbard, W. et al. Atmospheric confinement of jet streams on Uranus and Neptune. Nature 497, 344–347 (2013). https://doi.org/10.1038/nature12131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12131

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing