Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structures of the human and Drosophila 80S ribosome

Abstract

Protein synthesis in all cells is carried out by macromolecular machines called ribosomes. Although the structures of prokaryotic, yeast and protist ribosomes have been determined, the more complex molecular architecture of metazoan 80S ribosomes has so far remained elusive. Here we present structures of Drosophila melanogaster and Homo sapiens 80S ribosomes in complex with the translation factor eEF2, E-site transfer RNA and Stm1-like proteins, based on high-resolution cryo-electron-microscopy density maps. These structures not only illustrate the co-evolution of metazoan-specific ribosomal RNA with ribosomal proteins but also reveal the presence of two additional structural layers in metazoan ribosomes, a well-ordered inner layer covered by a flexible RNA outer layer. The human and Drosophila ribosome structures will provide the basis for more detailed structural, biochemical and genetic experiments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the human and Drosophila 80S ribosomes.
Figure 2: Protein architecture of the human 80S ribosome and associated factors.
Figure 3: Metazoan rRNA expansion segments.
Figure 4: Dynamic behaviour and co-evolution of expansion segments.
Figure 5: Layered evolution of the eukaryotic ribosome.

Accession codes

Accessions

Protein Data Bank

Data deposits

Coordinates of the atomic models have been deposited in the Protein Data Bank with accession numbers 3J38, 3J39, 3J3C and 3J3E for Drosophila 80S ribosomes and 3J3A, 3J3B, 3J3D and 3J3F for human 80S ribosomes. Full models can be obtained from the database of aligned ribosomal complexes (DARC) site (http://darcsite.genzentrum.lmu.de/darc/). Electron-microscopy maps of the Drosophila and human ribosomes have been deposited in the EM Data Bank under the accession codes EMD-5591 and EMD-5592, respectively. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to R.B. (beckmann@lmb.uni-muenchen.de).

References

  1. Schmeing, T. M. & Ramakrishnan, V. What recent ribosome structures have revealed about the mechanism of translation. Nature 461, 1234–1242 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Wilson, D. N. & Cate, J. H. D. The structure and function of the eukaryotic ribosome. Cold Spring Harb. Perspect. Biol. 4, a011536 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klinge, S., Voigts-Hoffmann, F., Leibundgut, M. & Ban, N. Atomic structures of the eukaryotic ribosome. Trends Biochem. Sci. 37, 189–198 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. Melnikov, S. et al. One core, two shells: bacterial and eukaryotic ribosomes. Nature Struct. Mol. Biol. 19, 560–567 (2012)

    Article  CAS  Google Scholar 

  5. Taylor, D. J. et al. Comprehensive molecular structure of the eukaryotic ribosome. Structure 17, 1591–1604 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Armache, J. P. et al. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-A resolution. Proc. Natl Acad. Sci. USA 107, 19748–19753 (2010)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  7. Armache, J. P. et al. Localization of eukaryote-specific ribosomal proteins in a 5.5-A cryo-EM map of the 80S eukaryotic ribosome. Proc. Natl Acad. Sci. USA 107, 19754–19759 (2010)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  8. Rabl, J., Leibundgut, M., Ataide, S. F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Arpagaus, S. & Ban, N. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334, 941–948 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334, 1524–1529 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Dube, P. et al. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution. J. Mol. Biol. 279, 403–421 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Spahn, C. M. et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes; the IRES functions as an RNA-based translation factor. Cell 118, 465–475 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J. D. & Stark, H. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13, 1695–1706 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Chandramouli, P. et al. Structure of the mammalian 80S ribosome at 8.7 A resolution. Structure 16, 535–548 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruvinsky, I. & Meyuhas, O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem. Sci. 31, 342–348 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Koyama, Y., Katagiri, S., Hanai, S., Uchida, K. & Miwa, M. Poly(ADP-ribose) polymerase interacts with novel Drosophila ribosomal proteins, L22 and l23a, with unique histone-like amino-terminal extensions. Gene 226, 339–345 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Ramakrishnan, V. Histone structure and the organization of the nucleosome. Annu. Rev. Biophys. Biomol. Struct. 26, 83–112 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. Taylor, D. J. et al. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J. 26, 2421–2431 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harms, J. M. et al. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol. Cell 30, 26–38 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. Gao, Y. G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  21. Dever, T. E. & Green, R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb. Perspect. Biol. 4, a013706 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ogle, J. M. & Ramakrishnan, V. Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129–177 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M. & Yusupova, G. A new understanding of the decoding principle on the ribosome. Nature 484, 256–259 (2012)

    Article  CAS  ADS  PubMed  Google Scholar 

  24. Lu, H., Li, W., Noble, W. S., Payan, D. & Anderson, D. C. Riboproteomics of the hepatitis C virus internal ribosomal entry site. J. Proteome Res. 3, 949–957 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Spahn, C. M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291, 1959–1962 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Balagopal, V. & Parker, R. Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae. RNA 17, 835–842 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gerbi, S. A. in Ribosomal RNA—Structure, Evolution, Processing, and Function in Protein Synthesis (eds Zimmermann, R. A. & Dahlberg, A. E.) 71–87 (CRC Press, 1996)

    Google Scholar 

  28. Haga, J. Y., Hamilton, M. G. & Petermann, M. L. Electron microscopic observations on the large subunit of the rat liver ribosome. J. Cell Biol. 47, 211–221 (1970)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cannone, J. J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fields, D. S. & Gutell, R. R. An analysis of large rRNA sequences folded by a thermodynamic method. Fold. Des. 1, 419–430 (1996)

    Article  CAS  PubMed  Google Scholar 

  31. Alkemar, G. & Nygard, O. Probing the secondary structure of expansion segment ES6 in 18S ribosomal RNA. Biochemistry 45, 8067–8078 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. Andersen, C. B. et al. Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature 443, 663–668 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  33. Srivastava, S., Verschoor, A. & Frank, J. Eukaryotic initiation factor-3 does not prevent association through physical blockage of the ribosomal subunit-subunit interface. J. Mol. Biol. 226, 301–304 (1992)

    Article  CAS  PubMed  Google Scholar 

  34. Siridechadilok, B., Fraser, C. S., Hall, R. J., Doudna, J. A. & Nogales, E. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310, 1513–1515 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  35. Yu, Y., Abaeva, I. S., Marintchev, A., Pestova, T. V. & Hellen, C. U. Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Res. 39, 4851–4865 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. Becker, T. et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373 (2009)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  38. Sweeney, R., Chen, L. H. & Yao, M. C. An rRNA variable region has an evolutionarily conserved essential role despite sequence divergence. Mol. Cell. Biol. 14, 4203–4215 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bradatsch, B. et al. Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nature Struct. Mol. Biol. 19, 1234–1241 (2012)

    Article  CAS  Google Scholar 

  40. Greber, B. J., Boehringer, D., Montellese, C. & Ban, N. Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit. Nature Struct. Mol. Biol. 19, 1228–1233 (2012)

    Article  CAS  Google Scholar 

  41. Leidig, C. et al. Structural characterization of a eukaryotic chaperone—the ribosome-associated complex. Nature Struct. Mol. Biol. 20, 23–28 (2013)

    Article  CAS  Google Scholar 

  42. Blau, M. et al. ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nature Struct. Mol. Biol. 12, 1015–1016 (2005)

    Article  CAS  Google Scholar 

  43. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)

    Article  CAS  PubMed  Google Scholar 

  44. Jossinet, F. & Westhof, E. Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21, 3320–3321 (2005)

    Article  CAS  PubMed  Google Scholar 

  45. Jossinet, F., Ludwig, T. E. & Westhof, E. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26, 2057–2059 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eswar, N., Eramian, D., Webb, B., Shen, M. Y. & Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. Jenner, L., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural rearrangements of the ribosome at the tRNA proofreading step. Nature Struct. Mol. Biol. 17, 1072–1078 (2010)

    Article  CAS  Google Scholar 

  48. Gebauer, F., Corona, D. F., Preiss, T., Becker, P. B. & Hentze, M. W. Translational control of dosage compensation in Drosophila by Sex-lethal: cooperative silencing via the 5′ and 3′ UTRs of msl-2 mRNA is independent of the poly(A) tail. EMBO J. 18, 6146–6154 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fuss, I. J., Kanof, M. E., Smith, P. D. & Zola, H. Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr. Protoc. Immunol. 85, 7.1.1–7.1.8 (2009)

    Google Scholar 

  50. Becker, T. et al. Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 482, 501–506 (2012)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  51. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003)

    Article  PubMed  Google Scholar 

  52. Becker, T. et al. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. Nature Struct. Mol. Biol. 18, 715–720 (2011)

    Article  CAS  Google Scholar 

  53. Hirsch, M., Scholkopf, B. & Habeck, M. A blind deconvolution approach for improving the resolution of cryo-EM density maps. J. Comput. Biol. 18, 335–346 (2011)

    Article  CAS  MathSciNet  PubMed  Google Scholar 

  54. Lasker, K. et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl Acad. Sci. USA 109, 1380–1387 (2012)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  55. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  56. Maden, B. E. et al. Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem. J. 246, 519–527 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tautz, D., Hancock, J. M., Webb, D. A., Tautz, C. & Dover, G. A. Complete sequences of the rRNA genes of Drosophila melanogaster. Mol. Biol. Evol. 5, 366–376 (1988)

    CAS  PubMed  Google Scholar 

  58. Thompson, J. F., Wegnez, M. R. & Hearst, J. E. Determination of the secondary structure of Drosophila melanogaster 5 S RNA by hydroxymethyltrimethylpsoralen crosslinking. J. Mol. Biol. 147, 417–436 (1981)

    Article  CAS  PubMed  Google Scholar 

  59. Rousset, F., Pelandakis, M. & Solignac, M. Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA. Proc. Natl Acad. Sci. USA 88, 10032–10036 (1991)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  60. Dunkle, J. A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  61. Hofacker, I. L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Humphrey, W., Dalke, A. & Schulten, K. VMD - Visual Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  PubMed  Google Scholar 

  64. Emsley, P. & Cowtan, K. Coot: model-Building Tools for Molecular Graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004)

    Article  CAS  PubMed  Google Scholar 

  65. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)

    Article  CAS  PubMed  Google Scholar 

  67. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  68. Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pettersen, E. F. et al. UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

  70. Nierhaus, K. H. & Dohme, F. Total reconstitution of functionally active 50S ribosomal subunits from E. coli. Proc. Natl Acad. Sci. USA 71, 4713–4717 (1974)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  71. Márquez, V. et al. Proteomic characterization of archaeal ribosomes reveals the presence of novel archaeal-specific ribosomal proteins. J. Mol. Biol. 405, 1215–1232 (2011)

    Article  CAS  PubMed  Google Scholar 

  72. Norousi, R. et al. Automated post-picking using MAPPOS improves particle image detection from cryo-EM micrographs. J. Struct. Biol. http://dx.doi.org/10.1016/j.jsb.2013.02.008 (2013)

Download references

Acknowledgements

We thank C. Ungewickell for assistance with cryo-EM data collection and P. Palluch for preparation of peripheral blood mononucleic cells. We thank M. Yusupov, A. Ben-Shem, N. Garreau de Loubresse and S. Melnikov for sharing S. cerevisiae X-ray data before publication. We thank P. Becker for access to his fly facility and help with embryo collection, and V. Márquez, T. Fröhlich, G. Arnold, I. Forné and A. Imhof for mass-spectrometry analysis. This research was supported by grants from the Deutsche Forschungsgemeinschaft SFB594, SFB646 and GRK 1721 (to R.B.), and FOR1805 (to R.B. and D.N.W.). D.N.W. is supported by the European Molecular Biology Organization (EMBO) young investigator program. This work was supported by a European Research Council (ERC) Advanced Grant (to R.B.).

Author information

Authors and Affiliations

Authors

Contributions

A.M.A. prepared D. melanogaster embryo extracts, purified D. melanogaster and H. sapiens ribosome samples, carried out mass-spectrometry analysis of H. sapiens ribosomes and prepared the figures; A.M.A. and J.-P.A. contributed blood, processed cryo-EM data and built atomic models; O.B. carried out cryo-EM data collection; M.H. performed deconvolution and sharpening on electron density maps; M.S. designed experiments for blood collection and peripheral-blood-mononuclear-cell preparations for human ribosome purification; A.M.A., J.-P.A., D.N.W. and R.B. interpreted results and wrote the manuscript. D.N.W. and R.B. designed research and supervised the project.

Corresponding author

Correspondence to Roland Beckmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-24, and Supplementary Tables 1-4. (PDF 11725 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anger, A., Armache, JP., Berninghausen, O. et al. Structures of the human and Drosophila 80S ribosome. Nature 497, 80–85 (2013). https://doi.org/10.1038/nature12104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12104

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing