Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predominant archaea in marine sediments degrade detrital proteins

Abstract

Half of the microbial cells in the Earth’s oceans are found in sediments1. Many of these cells are members of the Archaea2, single-celled prokaryotes in a domain of life separate from Bacteria and Eukaryota. However, most of these archaea lack cultured representatives, leaving their physiologies and placement on the tree of life uncertain. Here we show that the uncultured miscellaneous crenarchaeotal group (MCG) and marine benthic group-D (MBG-D) are among the most numerous archaea in the marine sub-sea floor. Single-cell genomic sequencing of one cell of MCG and three cells of MBG-D indicated that they form new branches basal to the archaeal phyla Thaumarchaeota3 and Aigarchaeota4, for MCG, and the order Thermoplasmatales, for MBG-D. All four cells encoded extracellular protein-degrading enzymes such as gingipain and clostripain that are known to be effective in environments chemically similar to marine sediments. Furthermore, we found these two types of peptidase to be abundant and active in marine sediments, indicating that uncultured archaea may have a previously undiscovered role in protein remineralization in anoxic marine sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global marine occurrence of miscellaneous crenarchaeotal group (MCG) and marine benthic group D (MBG-D).
Figure 2: Evolutionary placement of SAGs.
Figure 3: Proposed protein degradation pathway for MCG_E09 (a) and MBG-D_N05 and MBG-D_F20 (b), and gene architecture for selected extracellular peptidases (c, d).

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank as Thaumarchaeota archaeon SCGC AB-539-E09 (accession number ALXK00000000), Thermoplasmatales archaeon SCGC AB-539-C06 (AOSH00000000), Thermoplasmatales archaeon SCGC AB-539-N05 (ALXL00000000) and Thermoplasmatales archaeon SCGC AB-540-F20 (AOSI00000000).

References

  1. Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012)

    Article  ADS  CAS  Google Scholar 

  2. Schippers, A., Köweker, G., Höft, C. & Teichert, B. M. A. Quantification of microbial communities in forearc sediment basins off Sumatra. Geomicrobiol. J. 27, 170–182 (2010)

    Article  CAS  Google Scholar 

  3. Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol. 6, 245–252 (2008)

    Article  CAS  Google Scholar 

  4. Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011)

    Article  CAS  Google Scholar 

  5. Jarrell, K. F. et al. Major players on the microbial stage: why archaea are important. Microbiology 157, 919–936 (2011)

    Article  CAS  Google Scholar 

  6. Biddle, J. F. et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl Acad. Sci. USA 103, 3846–3851 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Wakeham, S. G., Lee, C., Hedges, J. I., Hernes, P. J. & Peterson, M. J. Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta 61, 5363–5369 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Pedersen, A.-G. U., Thomsen, T. R., Lomstein, B. A. & Jørgensen, N. O. G. Bacterial influence on amino acid enantiomerization in a coastal marine sediment. Limnol. Oceanogr. 46, 1358–1369 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Kubo, K. et al. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 6, 1949–1965 (2012)

    Article  CAS  Google Scholar 

  10. Holmkvist, L., Ferdelman, T. G. & Jørgensen, B. B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 75, 3581–3599 (2011)

    Article  ADS  CAS  Google Scholar 

  11. Raghunathan, A. et al. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71, 3342–3347 (2005)

    Article  CAS  Google Scholar 

  12. Stepanauskas, R. & Sieracki, M. E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl Acad. Sci. USA 104, 9052–9057 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Li, P. et al. Genetic structure of three fosmid-fragments encoding 16S rRNA genes of the Miscellaneous Crenarchaeotic Group (MCG): implications for physiology and evolution of marine sedimentary archaea. Environ. Microbiol. 14, 467–479 (2012)

    Article  CAS  Google Scholar 

  14. Rawlings, N. D., Barrett, A. J. & Bateman, A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40, D343–D350 (2012)

    Article  CAS  Google Scholar 

  15. Barrett, A. J. & Rawlings, N. D. Evolutionary lines of cysteine peptidases. Biol. Chem. 382, 727–733 (2001)

    Article  CAS  Google Scholar 

  16. Labrou, N. E. & Rigden, D. J. The structure–function relationship in the clostripain family of peptidases. Eur. J. Biochem. 271, 983–992 (2004)

    Article  CAS  Google Scholar 

  17. Reysenbach, A. et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442, 444–447 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Punta, M. et al. The Pfam protein families database. Nucleic Acids Res. 40, D290–D301 (2012)

    Article  CAS  Google Scholar 

  19. Kembhavi, A. A., Buttle, D. J. & Barrett, A. J. Clostripain: characterization of the active site. FEBS Lett. 283, 277–280 (1991)

    Article  CAS  Google Scholar 

  20. Lomstein, B. A., Langerhuus, A. T., Hondt, S. D., Jørgensen, B. B. & Spivack, A. J. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 484, 101–104 (2012)

    Article  ADS  CAS  Google Scholar 

  21. Markowitz, V. M. et al. IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res. 40, D123–D129 (2012)

    Article  CAS  Google Scholar 

  22. Schut, G. J., Menon, A. L. & Adams, M. W. W. 2-keto acid oxidoreductases from Pyrococcus furiosus and Thermococcus litoralis. Methods Enzymol. 331, 144–158 (2001)

    Article  CAS  Google Scholar 

  23. Hall, D. O., Cammack, R. & Rao, K. K. Role for ferredoxins in the origin of life and biological evolution. Nature 233, 136–138 (1971)

    Article  ADS  CAS  Google Scholar 

  24. Johnson, M. K., Rees, D. C. & Adams, M. W. W. Tungstoenzymes. Chem. Rev. 96, 2817–2840 (1996)

    Article  CAS  Google Scholar 

  25. Dale, A. W. et al. Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments. J. Mar. Res. 66, 127–155 (2008)

    Article  CAS  Google Scholar 

  26. Sapra, R., Bagramyan, K. & Adams, M. A simple energy-conserving system: Proton reduction copuled to proton translocation. Proc. Natl Acad. Sci. USA 100, 7545–7550 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Thauer, R., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Rev. Microbiol. 6, 579–591 (2008)

    Article  CAS  Google Scholar 

  28. Coolen, M. J. L. & Overmann, J. Functional exoenzymes as indicators of metabolically active bacteria in 124,000-year-old sapropel layers of the Eastern Mediterranean Sea. Appl. Environ. Microbiol. 66, 2589–2598 (2000)

    Article  CAS  Google Scholar 

  29. Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995)

    Article  CAS  Google Scholar 

  30. Brochier-Armanet, C., Gribaldo, S. & Forterre, P. Spotlight on the Thaumarchaeota. ISME J. 6, 227–230 (2012)

    Article  CAS  Google Scholar 

  31. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011)

    Article  CAS  Google Scholar 

  32. Niu, B., Fu, L., Sun, S. & Li, W. Artificial and natural duplicates in pyrosequencing reads of metagenomic data. BMC Bioinformatics 11, 187 (2010)

    Article  Google Scholar 

  33. Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012)

    Article  MathSciNet  CAS  Google Scholar 

  34. Meyer, F. et al. GenDB-an open source genome annotation system for prokaryote genomes. Nucleic Acids Res. 31, 2187–2195 (2003)

    Article  CAS  Google Scholar 

  35. Richter, M. et al. JCoast—A biologist-centric software tool for data mining and comparison of prokaryotic (meta)genomes. BMC Bioinformatics 9, 177 (2008)

    Article  Google Scholar 

  36. Ludwig, W. et al. ARB: a software environment for sequence data. Database 32, 1363–1371 (2004)

    CAS  Google Scholar 

  37. Woyke, T. et al. Assembling the marine metagenome, one cell at a time. PLoS ONE 4, e5299 (2009)

    Article  ADS  Google Scholar 

  38. Markowitz, V. M. et al. The integrated microbial genomes (IMG) system. Nucleic Acids Res. 34, D344–D348 (2006)

    Article  CAS  Google Scholar 

  39. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A Program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 0955–0964 (1997)

    Article  CAS  Google Scholar 

  40. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  CAS  Google Scholar 

  41. Swan, B. K. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011)

    Article  ADS  CAS  Google Scholar 

  42. Matte-Tailliez, O., Brochier, C., Forterre, P. & Philippe, H. Archaeal phylogeny based on ribosomal proteins. Mol. Biol. Evol. 19, 631–639 (2002)

    Article  CAS  Google Scholar 

  43. Brochier, C., Forterre, P. & Gribaldo, S. An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol. Biol. 5, 36 (2005)

    Article  Google Scholar 

  44. Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008)

    Article  CAS  Google Scholar 

  45. Stamatakis, A., Hoover, P. & Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57, 758–771 (2008)

    Article  Google Scholar 

  46. Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop. 1–8 (2010)

  47. Jørgensen, B. B. Case study—Århus Bay. Eutrophication in Coastal Marine Systems 137–154 (American Geophysical Union, 1996)

    Book  Google Scholar 

  48. Kjeldsen, K. U. et al. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol. Ecol. 60, 287–298 (2007)

    Article  CAS  Google Scholar 

  49. DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992)

    Article  ADS  CAS  Google Scholar 

  50. Stahl, D. A. & Amann, R. Development and Application of Nucleic Acid Probes (Wiley, 1991)

    Google Scholar 

  51. Takai, K. E. N. & Horikoshi, K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 66, 5066–5072 (2000)

    Article  CAS  Google Scholar 

  52. Teske, A. & Sørensen, K. B. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J. 2, 3–18 (2008)

    Article  CAS  Google Scholar 

  53. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010)

    Article  ADS  Google Scholar 

  54. Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Society 75, 7537–7541 (2009)

    CAS  Google Scholar 

  55. Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007)

    Article  CAS  Google Scholar 

  56. Ashelford, K. E., Weightman, A. J. & Fry, J. C. PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 30, 3481–3489 (2002)

    Article  CAS  Google Scholar 

  57. King, G. M. Characterization of β-glucosidase activity in intertidal marine sediments. Appl. Environ. Microbiol. 51, 373–380 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakayama, K., Kadowaki, T., Okamoto, K. & Yamamoto, K. Construction and characterization of arginine-specific cysteine proteinase (Arg-gingipain)-deficient mutants of Porphyromonas gingivalis: Evidence for significant contribution of Arg-gingipain to virulence. J. Biol. Chem. 270, 23619–23626 (1995)

    Article  CAS  Google Scholar 

  59. Rauber, P., Walker, B., Stone, S. & Shaw, E. Synthesis of lysine-containing sulphonium salts and their properties as proteinase inhibitors. Biochem. J. 250, 871 (1988)

    Article  CAS  Google Scholar 

  60. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing http://www.rproject.org (2012)

Download references

Acknowledgements

The authors thank the captain and crew of the R/V Tyra for sampling; T. B. Søgaard, A. Stentebjerg and B. Poulsen for technical work; F. Löffler for laboratory space; and D. Kirchman and S. Hallam for sharing their unpublished metagenomic data sets. This work was funded by the Danish National Research Foundation, the German Max Planck Society, NSF Center for Dark Energy Biosphere Investigations NSF-157595 (K.G.L.), The Danish Council for Independent Research–Natural Sciences (D.G.P.), the Villum Kann Rasmussen Foundation, an EU Marie Curie fellowship (M.A.L.), the German Research Foundation (S.L.) and the USA National Science Foundation awards EF-826924, OCE-821374 and OCE-1019242 (R.S.).

Author information

Authors and Affiliations

Authors

Contributions

K.G.L., L.S., D.G.P., K.U.K., R.S., A.S. and B.B.J. worked together to design experiment and develop the method for single cell sorting from sediments. K.G.L. wrote the main paper and developed the protein degradation hypothesis. L.S. wrote the Supplementary Information, designed and performed bioinformatic analyses. K.G.L. and L.S. performed phylogenetic tests. K.G.L. and D.G.P. reconstructed metabolic pathways with SAG genes. R.S. performed cell sorting and amplification. S.K., S.L., D.G.P. and L.S. developed protocols for cell separation from sediments. K.U.K. performed and analysed 16S rRNA gene amplicon sequencing; M.A.L., L.S. and K.G.L. performed quantitative PCR; A.D.S. performed enzyme activity measurements; and M.R. gave bioinformatic support and added quality control tests. A.S. and B.B.J. obtained the major funding for this work. All co-authors commented on and provided substantial edits to the manuscript.

Corresponding author

Correspondence to Karen G. Lloyd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Materials and Methods, Supplementary Tables 1-7 and 9-12 (see separate file for Supplementary Table 8), Supplementary Figures 1-10 and additional references. (PDF 1842 kb)

Supplementary Tables

This file contains Supplementary Table 8. (XLSX 44 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, K., Schreiber, L., Petersen, D. et al. Predominant archaea in marine sediments degrade detrital proteins. Nature 496, 215–218 (2013). https://doi.org/10.1038/nature12033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12033

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing