Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Patterns and mechanisms of early Pliocene warmth

Abstract

About five to four million years ago, in the early Pliocene epoch, Earth had a warm, temperate climate. The gradual cooling that followed led to the establishment of modern temperature patterns, possibly in response to a decrease in atmospheric CO2 concentration, of the order of 100 parts per million, towards preindustrial values. Here we synthesize the available geochemical proxy records of sea surface temperature and show that, compared with that of today, the early Pliocene climate had substantially lower meridional and zonal temperature gradients but similar maximum ocean temperatures. Using an Earth system model, we show that none of the mechanisms currently proposed to explain Pliocene warmth can simultaneously reproduce all three crucial features. We suggest that a combination of several dynamical feedbacks underestimated in the models at present, such as those related to ocean mixing and cloud albedo, may have been responsible for these climate conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Climate evolution over the past 5 Myr.
Figure 2: Temperature evolution over the past 5 Myr in different regions of the ocean.
Figure 3: Temperature changes in different regions of the ocean.
Figure 4: Evolution of SST gradients since 4–5 Myr ago.
Figure 5: Testing mechanisms of Pliocene warmth and reduced temperature gradients.
Figure 6: Global surface air temperature anomalies in two experiments.

Similar content being viewed by others

References

  1. Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984)

    ADS  CAS  Google Scholar 

  2. Crowley, T. Pliocene climates: the nature of the problem. Mar. Micropaleontol. 27, 3–12 (1996)

    ADS  Google Scholar 

  3. Ravelo, A. C., Andreasen, D. H., Lyle, M., Lyle, A. O. & Wara, M. W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267 (2004)

    ADS  CAS  PubMed  Google Scholar 

  4. Jansen, E., Fronval, T., Rack, F. & Channell, J. E. T. Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic seas during the last 3.5 Myr. Paleoceanography 15, 709–721 (2000)

    ADS  Google Scholar 

  5. Haug, G., Tiedemann, R., Zahn, R. & Ravelo, A. Role of Panama uplift on oceanic freshwater balance. Geology 29, 207–210 (2001)

    ADS  CAS  Google Scholar 

  6. Ruddiman, W. Orbital insolation, ice volume, and greenhouse gases. Quat. Sci. Rev. 22, 1597–1629 (2003)

    ADS  Google Scholar 

  7. Crowley, T. & Hyde, W. Transient nature of late Pleistocene climate variability. Nature 456, 226–230 (2008)

    ADS  CAS  PubMed  Google Scholar 

  8. Brierley, C. & Fedorov, A. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution. Paleoceanography 25, PA2214 (2010)

    ADS  Google Scholar 

  9. Fedorov, A. et al. The Pliocene paradox (mechanisms for a permanent El Niño). Science 312, 1485–1489 (2006)

    ADS  CAS  PubMed  Google Scholar 

  10. Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323, 1714–1718 (2009)

    ADS  CAS  PubMed  Google Scholar 

  11. Wara, M. W., Ravelo, A. C. & Delaney, M. L. Permanent El Niño-like conditions during the Pliocene warm period. Science 309, 758–761 (2005)

    ADS  CAS  PubMed  Google Scholar 

  12. Dekens, P., Ravelo, A., McCarthy, M. & Edwards, C. A 5 million year comparison of Mg/Ca and alkenone paleothermometers. Geochem. Geophys. Geosyst. 9, Q10001 (2008)

    ADS  Google Scholar 

  13. Steph, S., Tiedemann, R., Groeneveld, J., Sturm, A. & Nurnberg, D. Pliocene changes in tropical east Pacific upper ocean stratification: Response to tropical gateways? Proc. Ocean Drill. Program Sci. Results 202, 1–51 (2006)

    Google Scholar 

  14. Lawrence, K., Herbert, T., Brown, C., Raymo, M. & Haywood, A. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, PA2218 (2009)

    ADS  Google Scholar 

  15. Sosdian, S. & Rosenthal, Y. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325, 306–310 (2009)

    ADS  CAS  Google Scholar 

  16. Solomon, S. et al. Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, 2007)

  17. Dowsett, H. J. et al. Middle Pliocene Paleoenvironmental Reconstruction: PRISM2. Open File Report 99–535 (US Geol. Surv., 1999)

  18. Dowsett, H. J. et al. The PRISM3D paleoenvironmental reconstruction. Stratigraphy 7, 123–139 (2010)

    Google Scholar 

  19. Ballantyne, A. et al. Significantly warmer arctic surface temperatures during the Pliocene indicated by multiple independent proxies. Geology 38, 603–606 (2010)

    ADS  CAS  Google Scholar 

  20. Marlow, J., Lange, C., Wefer, G. & Rosell-Mele, A. Upwelling intensification as part of the Pliocene-Pleistocene climate transition. Science 290, 2288–2291 (2000)

    ADS  CAS  PubMed  Google Scholar 

  21. Medina-Elizalde, M., Lea, D. W. & Fantle, M. S. Implications of seawater Mg/Ca variability for Plio-Pleistocene tropical climate reconstruction. Earth Planet. Sci. Lett. 269, 585–595 (2008)

    ADS  Google Scholar 

  22. Williams, I., Pierrehumbert, R. & Huber, M. Global warming, convective threshold and false thermostats. Geophys. Res. Lett. 36, L21805 (2009)

    ADS  Google Scholar 

  23. DiNezio, P. N. et al. Climate response of the equatorial pacific to global warming. J. Clim. 22, 4873–4892 (2009)

    ADS  Google Scholar 

  24. Chandler, M., Rind, D. & Thompson, R. Joint investigations of the middle Pliocene climate II: GISS GCM Northern Hemisphere results. Global Planet. Change 9, 197–219 (1994)

    ADS  Google Scholar 

  25. Jia, G., Chen, F. & Peng, P. Sea surface temperature differences between the western equatorial Pacific and northern South China Sea since the Pliocene and their paleoclimatic implications. Geophys. Res. Lett. 35, L18609 (2008)

    ADS  Google Scholar 

  26. Li, L. et al. A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth Planet. Sci. Lett. 309, 10–20 (2011)

    ADS  CAS  Google Scholar 

  27. deMenocal, P. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004)

    ADS  CAS  Google Scholar 

  28. Boccaletti, G., Pacanowski, R., Philander, S. & Fedorov, A. The thermal structure of the upper ocean. J. Phys. Oceanogr. 34, 888–902 (2004)

    ADS  Google Scholar 

  29. Fedorov, A. V., Pacanowski, R. C., Philander, S. G. & Boccaletti, G. The effect of salinity on the wind-driven circulation and the thermal structure of the upper ocean. J. Phys. Oceanogr. 34, 1949–1966 (2004)

    ADS  Google Scholar 

  30. Ford, H. L., Ravelo, A. C. & Hovan, S. A deep Eastern Equatorial Pacific thermocline during the early Pliocene warm period. Earth Planet. Sci. Lett. 355–356, 152–161 (2012)

    ADS  Google Scholar 

  31. Steph, S. et al. Early Pliocene increase in thermohaline overturning: a precondition for the development of the modern equatorial pacific cold tongue. Paleoceanography 25, PA2202 (2010)

    ADS  Google Scholar 

  32. McCreary, J. & Lu, P. Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J. Phys. Oceanogr. 24, 466–497 (1994)

    Google Scholar 

  33. Haywood, A. M. et al. Comparison of mid-Pliocene climate predictions produced by the HADAM3 and GCMAM3 general circulation models. Global Planet. Change 66, 208–224 (2009)

    ADS  Google Scholar 

  34. Lunt, D., Foster, G., Haywood, A. & Stone, E. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature 454, 1102–1105 (2008)

    ADS  CAS  Google Scholar 

  35. Maier-Reimer, E., Mikolajewicz, U. & Crowley, T. Ocean general circulation model sensitivity experiment with an open Central American isthmus. Paleoceanography 5, 349–366 (1990)

    ADS  Google Scholar 

  36. Collins, M. El Niño- or La Niña-like climate change? Clim. Dyn. 24, 89–104 (2005)

    Google Scholar 

  37. Lunt, D. et al. Earth system sensitivity inferred from Pliocene modelling and data. Nature Geosci. 3, 60–64 (2010)

    ADS  CAS  Google Scholar 

  38. Pagani, M., Liu, Z., LaRiviere, J. & Ravelo, A. High earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nature Geosci. 3, 27–30 (2010)

    ADS  CAS  Google Scholar 

  39. Haug, G. & Tiedemann, R. Effect of the formation of the Isthmus of Panama on Atlantic ocean thermohaline circulation. Nature 393, 673–676 (1998)

    ADS  CAS  Google Scholar 

  40. Molnar, P. Closing of the Central American seaway and the ice age: a critical review. Paleoceanography 23, PA2201 (2008)

    ADS  Google Scholar 

  41. Zhang, X. et al. Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: insights from a multi-model study. Earth Planet. Sci. Lett. 317–318, 76–84 (2012)

    ADS  Google Scholar 

  42. Cane, M. A. & Molnar, P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411, 157–162 (2001)

    ADS  CAS  PubMed  Google Scholar 

  43. Jochum, M., Fox-Kemper, B., Molnar, P. & Shields, C. Differences in the Indonesian Seaway in a coupled climate model and their relevance to Pliocene climate and El Niño. Paleoceanography 24, PA1212 (2009)

    ADS  Google Scholar 

  44. Barreiro, M. & Philander, S. G. Response of the tropical Pacific to changes in extratropical clouds. Clim. Dyn. 31, 713–729 (2008)

    Google Scholar 

  45. Fedorov, A., Brierley, C. & Emanuel, K. Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature 463, 1066–1070 (2010)

    ADS  CAS  PubMed  Google Scholar 

  46. Raymo, M., Grant, B., Horowitz, M. & Rau, G. Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Mar. Micropaleontol. 27, 313–326 (1996)

    ADS  Google Scholar 

  47. Gent, P. R. et al. The Community Climate System Model version 4. J. Clim. 24, 4973–4991 (2011)

    ADS  Google Scholar 

  48. Fedorov, A., Barreiro, M., Boccaletti, G., Pacanowski, R. & Philander, S. The freshening of surface waters in high latitudes: effects on the thermohaline and wind-driven circulations. J. Phys. Oceanogr. 37, 896–907 (2007)

    ADS  Google Scholar 

  49. Tziperman, E. & Farrell, B. Pliocene equatorial temperature: lessons from atmospheric superrotation. Paleoceanography 24, PA1101 (2009)

    ADS  Google Scholar 

  50. Lisiecki, L. E. & Raymo, M. E. A. Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1–17 (2005)

    Google Scholar 

  51. Haug, G. et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature 433, 821–825 (2005)

    ADS  CAS  PubMed  Google Scholar 

  52. Shipboard. Scientific Party in Proc. ODP Init. Reports. Vol. 162 (eds Jansen, E. et al.) 91–138 (Texas A & M Univ., 1996)

  53. Lawrence, K. T., Herbert, T. D., Dekens, P. S. & Ravelo, A. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M., Haywood, A. M., Gregory, F. J. & Schmidt, D. N. ) 539–562 (Geol. Soc., 2007)

    Google Scholar 

  54. Müller, P., Kirst, G., Ruhland, G., von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index UK’37 based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998)

    ADS  Google Scholar 

  55. Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde, R. & Haug, G. H. Subpolar link to the emergence of the modern equatorial pacific cold tongue. Science 328, 1550–1553 (2010)

    ADS  PubMed  Google Scholar 

  56. McClymont, E. L., Rosell-Melé, A., Giraudeau, J., Pierre, C. & Lloyd, J. M. Alkenone and coccolith records of the mid-Pleistocene in the south-east Atlantic: implications for the index and south African climate. Quat. Sci. Rev. 24, 1559–1572 (2005)

    ADS  Google Scholar 

  57. Müller, P. J., Cepek, M., Ruhland, G. & Schneider, R. R. Alkenone and coccolithophorid species changes in late quaternary sediments from the Walvis ridge: implications for the alkenone paleotemperature method. Palaeogeogr. Palaeoclimatol. Palaeoecol. 135, 71–96 (1997)

    Google Scholar 

  58. Dekens, P., Lea, D., Pak, D. & Spero, H. Core top calibration of Mg/Ca in tropical foraminifera: refining paleotemperature estimation. Geochem. Geophys. Geosyst. 3, 1–29 (2002)

    Google Scholar 

  59. Anand, P., Elderfield, H. & Conte, M. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 18, 1050 (2003)

    ADS  Google Scholar 

  60. Karas, C., Nürnberg, D., Tiedemann, R. & Garbe-Schönberg, D. Pliocene Indonesian throughflow and Leeuwin current dynamics: implications for Indian Ocean polar heat flux. Paleoceanography 26, PA2217 (2011)

    ADS  Google Scholar 

  61. Regenberg, M. et al. Assessing the effect of dissolution on planktonic foraminiferal Mg/Ca ratios: evidence from Caribbean core tops. Geochem. Geophys. Geosyst. 7, Q07P15 (2006)

    Google Scholar 

  62. Groeneveld, J. et al. Foraminiferal Mg/Ca increase in the Caribbean during the Pliocene: western Atlantic warm pool formation, salinity influence, or diagenetic overprint. Geochem. Geophys. Geosyst. 9, Q01P23 (2008)

    Google Scholar 

  63. Groeneveld, J. Effect of the Pliocene Closure of the Panamanian Gateway on Caribbean and east Pacific Sea Surface Temperatures and Salinities by Applying Combined Mg/Ca and 18O Measurements (5. 6-2. 2 Ma) 9–14. PhD thesis, Univ. Kiel. (2005)

  64. de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F. & Beaufort, L. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433, 294–298 (2005)

    ADS  CAS  PubMed  Google Scholar 

  65. Karas, C. et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. Nature Geosci. 2, 434–438 (2009)

    ADS  CAS  Google Scholar 

  66. Etourneau, J., Martinez, P., Blanz, T. & Schneider, R. Pliocene-Pleistocene variability of upwelling activity, productivity, and nutrient cycling in the Benguela region. Geology 37, 871–874 (2009)

    ADS  CAS  Google Scholar 

  67. Dekens, P. S., Ravelo, A. C. & McCarthy, M. D. Warm upwelling regions in the Pliocene warm period. Paleoceanography 22, PA3211 (2007)

    ADS  Google Scholar 

  68. Liu, Z. & Herbert, T. D. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature 427, 720–723 (2004)

    ADS  CAS  PubMed  Google Scholar 

  69. Herbert, T., Peterson, L., Lawrence, K. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010)

    ADS  CAS  PubMed  Google Scholar 

  70. Cleaveland, L. C. & Herbert, T. D. Coherent obliquity band and heterogeneous precession band responses in early Pleistocene tropical sea surface temperatures. Paleoceanography 22, PA2216 (2007)

    ADS  Google Scholar 

  71. Etourneau, J., Martinez, P., Blanz, T. & Schneider, R. Intensification of the Walker and Hadley atmospheric circulations during the Pliocene-Pleistocene climate transition. Earth Planet. Sci. Lett. 297, 103–110 (2010)

    ADS  CAS  Google Scholar 

  72. LaRiviere, J. et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012)

    ADS  CAS  PubMed  Google Scholar 

  73. Herbert, T. D. & Schuffert, J. Alkenone unsaturation estimates of late Miocene through late Pliocene sea surface temperature changes, ODP site 958. Proc. ODP Sci. Res. 159T, 17–22 (1998)

    CAS  Google Scholar 

  74. Martínez-Garcia, A. et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24, PA1207 (2009)

    ADS  Google Scholar 

  75. Lawrence, K., Sosdian, S., White, H. & Rosenthal, Y. North Atlantic climate evolution through the Plio-Pleistocene climate transitions. Earth Planet. Sci. Lett. 300, 329–342 (2010)

    ADS  CAS  Google Scholar 

  76. Karas, C., Nürnberg, D., Tiedemann, R. & Garbe-Schönberg, D. Pliocene climate change of the southwest Pacific and the impact of ocean gateways. Earth Planet. Sci. Lett. 301, 117–124 (2011)

    ADS  CAS  Google Scholar 

  77. Tian, J. et al. Late Pliocene monsoon linkage in the tropical South China Sea. Earth Planet. Sci. Lett. 252, 72–81 (2006)

    ADS  CAS  Google Scholar 

  78. Ravelo, A. Walker circulation and global warming: lessons from the geologic past. Oceanography 19, 114–122 (2006)

    Google Scholar 

  79. Shields, C. A. et al. The low resolution CCSM4. J. Clim. 25, 3993–4014 (2012)

    ADS  Google Scholar 

  80. Bitz, C. M. et al. Climate sensitivity of the Community Climate System Model version 4. J. Clim. 25, 3053–3070 (2012)

    ADS  Google Scholar 

  81. Sriver, R. L. & Huber, M. Observational evidence for an ocean heat pump induced by tropical cyclones. Nature 447, 577–580 (2007)

    ADS  CAS  PubMed  Google Scholar 

  82. Manucharyan, G., Brierley, C. & Fedorov, A. Climate impacts of intermittent upper ocean mixing induced by tropical cyclones. J. Geophys. Res. 116, C11038 (2011)

    ADS  Google Scholar 

  83. Caballero, R. & Huber, M. Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys. Res. Lett. 37, L11701 (2010)

    ADS  Google Scholar 

  84. McKay, R. et al. Antarctic and Southern Ocean influences on late Pliocene global cooling. Proc. Natl Acad. Sci. USA 109, 6423–6428 (2012)

    ADS  CAS  PubMed  Google Scholar 

  85. Bartoli, G., Hönisch, B. & Zeebe, R. E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography 26, PA4213 (2011)

    ADS  Google Scholar 

  86. Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. F. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324, 1551–1554 (2009)

    ADS  PubMed  Google Scholar 

  87. Seki, O. et al. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292, 201–211 (2010)

    ADS  CAS  Google Scholar 

  88. Tripati, A. K., Roberts, C. D. & Eagle, R. A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326, 1394–1397 (2009)

    ADS  CAS  PubMed  Google Scholar 

  89. Kürschner, W. M., van der Burgh, J., Visscher, H. & Dilcher, D. L. Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Mar. Micropaleontol. 27, 299–312 (1996)

    ADS  Google Scholar 

  90. Petit, J. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    ADS  CAS  Google Scholar 

  91. Siegenthaler, U. et al. Stable carbon cycle-climate relationship during the late Pleistocene. Science 310, 1313–1317 (2005)

    ADS  CAS  PubMed  Google Scholar 

  92. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453, 379–382 (2008)

    ADS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the grants to A.V.F. and K.T.L. from the US National Science Foundation (OCE-0901921 and OCE-0623310), the US Department of Energy Office of Science (DE-SC0007037) and the David and Lucile Packard Foundation. Most of the data compiled in this study comes from samples collected by the Deep Sea Drilling Project, the Ocean Drilling Program, and the Integrated Ocean Drilling Program, supported by the National Science Foundation. This work was supported in part by the Yale University Faculty of Arts and Sciences High Performance Computing facility. A.V.F. thanks G. Philander, P. deMenocal, T. Herbert, Y. Rosenthal, A. Haywood, D. Lunt, M. Barreiro, E. Tziperman, D. Battisti, M. Cane and C. Wunsch for discussions of this topic. We are grateful to a great number of scientists who provided the data used in this study.

Author information

Authors and Affiliations

Authors

Contributions

A.V.F., K.T.L. and C.M.B. coordinated the manuscript and contributed equally to writing the manuscript and to the ideas it contains; K.T.L. compiled the SST data with Z.L. (alkenones) and P.S.D. (Mg/Ca). C.M.B. performed the model simulations with A.V.F.; A.V.F. compiled the CO2 data. A.C.R. helped to interpret the data. All authors were involved in the writing at different stages of the work on this manuscript.

Corresponding author

Correspondence to A. V. Fedorov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3 and Supplementary Figures 1-13. (PDF 3122 kb)

Supplementary Data

This file contains oxygen isotopes, magnetic susceptibility and carbon dioxide estimates for the past five million years. This data is shown in figure 1. (XLS 743 kb)

Supplementary Data

This file contains sea surface temperature estimates, both at their original time resolution and temporally smoothed. These estimates are those shown in figures 2-3 and Supplementary Figures 4-9. Further processing of this data, as described in the Methods, allows replication of Supplementary Figures 1-3 and 10. (XLS 8566 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, A., Brierley, C., Lawrence, K. et al. Patterns and mechanisms of early Pliocene warmth. Nature 496, 43–49 (2013). https://doi.org/10.1038/nature12003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12003

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing