Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CLASP-mediated cortical microtubule organization guides PIN polarization axis

A Retraction to this article was published on 19 March 2014

Abstract

Recent evidence indicates a correlation between orientation of the plant cortical microtubule cytoskeleton and localization of polar cargoes1. However, the molecules and mechanisms that create this correlation have remained unknown. Here we show that, in Arabidopsis thaliana, the microtubule orientation regulators CLASP2,3 and MAP65 (refs 3, 4) control the abundance of polarity regulator PINOID kinase5,6 at the plasma membrane. By localized upregulation of clathrin-dependent endocytosis7 at cortical microtubule- and clathrin-rich domains orthogonal to the axis of polarity, PINOID accelerates the removal of auxin transporter PIN proteins8,9,10 from those sites. This mechanism links directional microtubule organization to the polar localization of auxin transporter PIN proteins, and clarifies how microtubule-enriched cell sides are kept distinct from polar delivery domains. Our results identify the molecular machinery that connects microtubule organization to the regulation of the axis of PIN polarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIN2 localization and trafficking is altered in the clasp-1 mutant.
Figure 2: PINOID abundance is enhanced in the clasp-1 mutant.
Figure 3: Endocytosis is enhanced in clasp-1 mutants by a PID-dependent increment in plasma-membrane localized clathrin.
Figure 4: Microtubule orientation defines the axis of PIN polarization.

Similar content being viewed by others

References

  1. Heisler, M. G. et al. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol. 8, e1000516 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ambrose, C., Allard, J. F., Cytrynbaum, E. N. & Wasteneys, G. O. A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis . Nature Commun. 2, 430 (2011)

    Article  ADS  Google Scholar 

  3. Dhonukshe, P. et al. A PLETHORA-auxin transcription module controls cell division plane rotation through MAP65 and CLASP. Cell 149, 383–396 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. Smertenko, A. et al. A new class of microtubule-associated proteins in plants. Nature Cell Biol. 2, 750–753 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Friml, J. et al. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306, 862–865 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Dhonukshe, P. et al. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 137, 3245–3255 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. Dhonukshe, P. et al. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis . Curr. Biol. 17, 520–527 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wisniewska, J. et al. Polar PIN localization directs auxin flow in plants. Science 312, 883 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. Dhonukshe, P. et al. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456, 962–966 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, R. & Gundersen, G. G. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nature Rev. Mol. Cell Biol. 9, 860–873 (2008)

    Article  CAS  Google Scholar 

  12. Fu, Y., Gu, Y., Zheng, Z., Wasteneys, G. & Yang, Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120, 687–700 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Nagawa, S. et al. ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol. 10, e1001299 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu, T. et al. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis . Cell 143, 99–110 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ambrose, J. C., Shoji, T., Kotzer, A. M., Pighin, J. A. & Wasteneys, G. O. The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19, 2763–2775 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Geldner, N., Friml, J., Stierhof, Y. D., Jurgens, G. & Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Dhonukshe, P. et al. Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev. Cell 10, 137–150 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. Dharmasiri, N. et al. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9, 109–119 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Hayashi, K. et al. Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc. Natl Acad. Sci. USA 105, 5632–5637 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dhonukshe, P., Mathur, J., Hulskamp, M. & Gadella, T. W., Jr Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol. 3, 11 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karahara, I. et al. The preprophase band is a localized center of clathrin-mediated endocytosis in late prophase cells of the onion cotyledon epidermis. Plant J. 57, 819–831 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. Di Laurenzio, L. et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423–433 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. Sasabe, M., Kosetsu, K., Hidaka, M., Murase, A. & Machida, Y. Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal. Behav. 6, 743–747 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heisler, M. G. et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899–1911 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Xu, J. & Scheres, B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17, 525–536 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003)

    Article  PubMed  Google Scholar 

  28. Michniewicz, M. et al. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130, 1044–1056 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. Galinha, C. et al. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449, 1053–1057 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Konopka, C. A., Backues, S. K. & Bednarek, S. Y. Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20, 1363–1380 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kotogány, E., Dudits, D., Horvath, G. V. & Ayaydin, F. A rapid and robust assay for detection of S-phase cell cycle progression in plant cells and tissues by using ethynyl deoxyuridine. Plant Methods 6, 5 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sauer, M., Paciorek, T., Benkova, E. & Friml, J. Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nature Protocols 1, 98–103 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Abas, L. et al. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nature Cell Biol. 8, 249–256 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Kim, Y. W. et al. Arabidopsis dynamin-like 2 that binds specifically to phosphatidylinositol 4-phosphate assembles into a high-molecular weight complex in vivo and in vitro. Plant Physiol. 127, 1243–1255 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Estelle, G. Wasteneys, K. Hayashi, C. Luschnig, I. Hwang, M. Sasabe and M. Heisler for sharing published material. We thank F. Kindt and R. Leito for photography and image processing, and the Akhmanova laboratory for the western blotting facility. This work was supported by the Utrecht University’s Starting Independent Investigator, the Netherlands Organisation for Scientific Research VIDI and European Research Council Starting Investigator grants to P.D., and the European Research Council Advanced Investigator grant, the Netherlands Organisation for Scientific Research Spinoza and Netherlands Proteomics Centre grants to B.S. K.K. was recruited from grants of P.D., and H.Z. was supported by grants of B.S.

Author information

Authors and Affiliations

Authors

Contributions

P.D. conceptualized the project, designed the experiments and directed the work; B.S. contributed to the experimental design; K.K. and P.D. performed experiments and analysed data; H.Z. contributed to western analysis; P.D., K.K. and B.S. wrote the paper.

Corresponding author

Correspondence to Pankaj Dhonukshe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1 and Supplementary Figures 1-10. (PDF 9120 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakar, K., Zhang, H., Scheres, B. et al. CLASP-mediated cortical microtubule organization guides PIN polarization axis. Nature 495, 529–533 (2013). https://doi.org/10.1038/nature11980

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11980

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing