Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional organization of human sensorimotor cortex for speech articulation

Subjects

A Corrigendum to this article was published on 01 May 2013

Abstract

Speaking is one of the most complex actions that we perform, but nearly all of us learn to do it effortlessly. Production of fluent speech requires the precise, coordinated movement of multiple articulators (for example, the lips, jaw, tongue and larynx) over rapid time scales. Here we used high-resolution, multi-electrode cortical recordings during the production of consonant-vowel syllables to determine the organization of speech sensorimotor cortex in humans. We found speech-articulator representations that are arranged somatotopically on ventral pre- and post-central gyri, and that partially overlap at individual electrodes. These representations were coordinated temporally as sequences during syllable production. Spatial patterns of cortical activity showed an emergent, population-level representation, which was organized by phonetic features. Over tens of milliseconds, the spatial patterns transitioned between distinct representations for different consonants and vowels. These results reveal the dynamic organization of speech sensorimotor cortex during the generation of multi-articulator movements that underlies our ability to speak.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: vSMC physiology during syllable production.
Figure 2: Spatial representation of articulators.
Figure 3: Temporal representation of articulators.
Figure 4: Phonetic organization of spatial patterns.
Figure 5: Dynamics of phonetic representations.

Similar content being viewed by others

References

  1. Levelt, W. J. M. Speaking: From Intention to Articulation (MIT Press, 1993)

    Book  Google Scholar 

  2. Ladefoged, P. & Johnson, K. A Course in Phonetics (Wadsworth Publishing, 2010)

    Google Scholar 

  3. Browman, C. P. & Goldstein, L. Articulatory gestures as phonological units. Haskins Laboratories Status Report on Speech Research 99, 69–101 (1989)

    Google Scholar 

  4. Fowler, C. A., Rubin, P. E., Remez, R. E. & Turvey, M. T. in Language Production: Speech and Talk Vol. 1 (ed. Butterworth, B. ) 373–420 (Academic Press, 1980)

    Google Scholar 

  5. Gracco, V. L. & Lofqvist, A. Speech motor coordination and control: evidence from lip, jaw, and laryngeal movements. J. Neurosci. 14, 6585–6597 (1994)

    Article  CAS  Google Scholar 

  6. Schöner, G. & Kelso, J. A. Dynamic pattern generation in behavioral and neural systems. Science 239, 1513–1520 (1988)

    Article  ADS  Google Scholar 

  7. Franklin, D. W. & Wolpert, D. M. Computational mechanisms of sensorimotor control. Neuron 72, 425–442 (2011)

    Article  CAS  Google Scholar 

  8. Brown, S. et al. The somatotopy of speech: phonation and articulation in the human motor cortex. Brain Cogn. 70, 31–41 (2009)

    Article  Google Scholar 

  9. Guenther, F. H., Ghosh, S. S. & Tourville, J. A. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang. 96, 280–301 (2006)

    Article  Google Scholar 

  10. Schulz, G. M., Varga, M., Jeffires, K., Ludlow, C. L. & Braun, A. R. Functional neuroanatomy of human vocalization: an H215O PET study. Cereb. Cortex 15, 1835–1847 (2005)

    Article  CAS  Google Scholar 

  11. Jürgens, U. Neural pathways underlying vocal control. Neurosci. Biobehav. Rev. 26, 235–258 (2002)

    Article  Google Scholar 

  12. Kuypers, H. G. Corticobular connexions to the pons and lower brain-stem in man: an anatomical study. Brain 81, 364–388 (1958)

    Article  CAS  Google Scholar 

  13. Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues (Smith-Gordon, 1994)

    Google Scholar 

  14. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man studied by electrical stimulation. Brain 60, 389–443 (1937)

    Article  Google Scholar 

  15. Foerster, O. The cerebral cortex in man. Lancet 221, 309–312 (1931)

    Google Scholar 

  16. Penfield, W. & Roberts, R. Speech and Brain: Mechanisms. (Princeton, 1959)

    Google Scholar 

  17. Saltzman, E. & Munhall, K. A dynamical approach to gestural patterning in speech production. Ecol. Psychol. 1, 333–382 (1989)

    Article  Google Scholar 

  18. Clements, G. N. & Hume, E. in The Handbook of Phonological Theory (ed. Goldsmith, J. A. ) 245–306 (Basil Blackwell, 1995)

    Google Scholar 

  19. Chomsky, N. & Halle, M. The Sound Pattern of English (MIT Press, 1991)

    Google Scholar 

  20. Mesgarani, N. & Chang, E. F. Selective cortical representation of attended speaker in multi-talker speech perception. Nature 485, 233–236 (2012)

    Article  ADS  CAS  Google Scholar 

  21. Crone, N. E., Miglioretti, D. L., Gordon, B. & Lesser, R. P. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121, 2301–2315 (1998)

    Article  Google Scholar 

  22. Edwards, E. et al. Spatiotemporal imaging of cortical activation during verb generation and picture naming. Neuroimage 50, 291–301 (2010)

    Article  Google Scholar 

  23. Ray, S. & Maunsell, J. H. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011)

    Article  CAS  Google Scholar 

  24. Kent, R. D. in The Production of Speech (ed. MacNeilage, P. F. ) (Springer-Verlag, 1983)

    Google Scholar 

  25. McCarthy, G., Allison, T. & Spencer, D. D. Localization of the face area of human sensorimotor cortex by intracranial recording of somatosensory evoked potentials. J. Neurosurg. 79, 874–884 (1993)

    Article  CAS  Google Scholar 

  26. Afshar, A. et al. Single-trial neural correlates of arm movement preparation. Neuron 71, 555–564 (2011)

    Article  CAS  Google Scholar 

  27. Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005)

    Article  CAS  Google Scholar 

  28. Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544–557 (2009)

    Article  CAS  Google Scholar 

  29. Ahrens, M. B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012)

    Article  ADS  CAS  Google Scholar 

  30. Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I. & Shenoy, K. V. Cortical preparatory activity: representation of movement or first cog in a dynamical machine? Neuron 68, 387–400 (2010)

    Article  CAS  Google Scholar 

  31. McCarthy, J. J. Feature geometry and dependency: a review. Phonetica 45, 84–108 (1988)

    Article  Google Scholar 

  32. Briggman, K. L. & Kristan, W. B. Multifunctional pattern-generating circuits. Annu. Rev. Neurosci. 31, 271–294 (2008)

    Article  CAS  Google Scholar 

  33. Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012)

    Article  ADS  CAS  Google Scholar 

  34. Brown, S., Ngan, E. & Liotti, M. A larynx area in the human motor cortex. Cereb. Cortex 18, 837–845 (2008)

    Article  Google Scholar 

  35. Terumitsu, M., Fujii, Y., Suzuki, K., Kwee, I. L. & Nakada, T. Human primary motor cortex shows hemispheric specialization for speech. Neuroreport 17, 1091–1095 (2006)

    Article  Google Scholar 

  36. Hast, M. H., Fischer, J. M., Wetzel, A. B. & Thompson, V. E. Cortical motor representation of the laryngeal muscles in Macaca mulatta. Brain Res. 73, 229–240 (1974)

    Article  CAS  Google Scholar 

  37. Jürgens, U. On the elicitability of vocalization from the cortical larynx area. Brain Res. 81, 564–566 (1974)

    Article  Google Scholar 

  38. Pruszynski, J. A. et al. Primary motor cortex underlies multi-joint integration for fast feedback control. Nature 478, 387–390 (2011)

    Article  ADS  CAS  Google Scholar 

  39. Hatsopoulos, N. G. & Suminski, A. J. Sensing with the motor cortex. Neuron 72, 477–487 (2011)

    Article  CAS  Google Scholar 

  40. Tremblay, S., Shiller, D. M. & Ostry, D. J. Somatosensory basis of speech production. Nature 423, 866–869 (2003)

    Article  ADS  CAS  Google Scholar 

  41. Matyas, F. et al. Motor control by sensory cortex. Science 330, 1240–1243 (2010)

    Article  ADS  CAS  Google Scholar 

  42. Rathelot, J. A. & Strick, P. L. Muscle representation in the macaque motor cortex: an anatomical perspective. Proc. Natl Acad. Sci. USA 103, 8257–8262 (2006)

    Article  ADS  CAS  Google Scholar 

  43. Gracco, V. L. & Abbs, J. H. Dynamic control of the perioral system during speech: kinematic analyses of autogenic and nonautogenic sensorimotor processes. J. Neurophysiol. 54, 418–432 (1985)

    Article  CAS  Google Scholar 

  44. Sherrington, C. S. The Integrative Action of the Nervous System (Yale University Press, 1911)

    Book  Google Scholar 

  45. Jakobson, R., Fant, G. & Halle, M. Preliminaries to speech analysis: the distinctive features and their correlates (MIT Press, 1969)

    Google Scholar 

  46. Keating, P. A. The Window Model of Coarticulation: Articulatory Evidence (Cambridge Univ. Press, 1990)

    Google Scholar 

  47. Dell, G. S., Juliano, C. & Govindjee, A. Structure and content in language production: a theory of frame constraints in phonological speech errors. Cogn. Sci. 17, 149–195 (1993)

    Article  Google Scholar 

  48. Mesgarani, N. & Chang, E. F. Selective cortical representation of attended speaker in multi-talker speech perception. Nature 485, 233–236 (2012)

    Article  ADS  CAS  Google Scholar 

  49. Yang, X. et al. Auditory representations of acoustic signals. IEEE Transactions Inf. Theor. 38, 824–839 (1992)

    Article  Google Scholar 

  50. International Phonetic Association Handbook of the International Phonetic Association (Cambridge Univ. Press, 1999)

    Google Scholar 

  51. Rousseeuw, P. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Ren for technical help with data collection and pre-processing, and M. Babiak for audio transcription. J. Houde, C. Niziolek, S. Lisberger, K. Chaisanguanthum, C. Cheung and I. Garner provided helpful comments on the manuscript. E.F.C. was funded by the US National Institutes of Health grants R00-NS065120, DP2-OD00862 and R01-DC012379, and the Ester A. and Joseph Klingenstein Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.F.C. conceived and collected the data for this project. K.E.B. designed and implemented the analysis with assistance from E.F.C. N.M. assisted with preliminary analysis. K.E.B. and E.F.C. wrote the manuscript. K.J. provided phonetic consultation on experimental design and interpretation of results. E.F.C. supervised the project.

Corresponding author

Correspondence to Edward F. Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-13, Supplementary Table 1 and Supplementary Methods. (PDF 5017 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchard, K., Mesgarani, N., Johnson, K. et al. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013). https://doi.org/10.1038/nature11911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11911

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing