Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity

Subjects

Abstract

Bacteriophages (or phages) are the most abundant biological entities on earth, and are estimated to outnumber their bacterial prey by tenfold1. The constant threat of phage predation has led to the evolution of a broad range of bacterial immunity mechanisms that in turn result in the evolution of diverse phage immune evasion strategies, leading to a dynamic co-evolutionary arms race2,3. Although bacterial innate immune mechanisms against phage abound, the only documented bacterial adaptive immune system is the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system, which provides sequence-specific protection from invading nucleic acids, including phage4,5,6,7,8,9,10,11. Here we show a remarkable turn of events, in which a phage-encoded CRISPR/Cas system is used to counteract a phage inhibitory chromosomal island of the bacterial host. A successful lytic infection by the phage is dependent on sequence identity between CRISPR spacers and the target chromosomal island. In the absence of such targeting, the phage-encoded CRISPR/Cas system can acquire new spacers to evolve rapidly and ensure effective targeting of the chromosomal island to restore phage replication.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic organization of the ICP1 CRISPR/Cas system.
Figure 2: Genomic organization of PLE1, a representative V. cholerae PLE targeted by the CRISPR/Cas system of ICP1-related phages.
Figure 3: Sequence-based targeting by the ICP1 CRISPR/Cas system is essential for lytic growth on V. cholerae PLE+.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

The sequences for the CRISPR/Cas system in ICP1_2011_A and ICP1_2006_E have been deposited at GenBank (accession numbers KC152959 and KC152958, respectively). The sequences for the V. cholerae PLEs identified in clinical isolates from the ICDDR,B have been deposited at GenBank/EMBL/DDBJ under the accession numbers KC152960 (PLE1) and KC152961 (PLE2).

References

  1. Brüssow, H. & Hendrix, R. W. Phage genomics: small is beautiful. Cell 108, 13–16 (2002)

    Article  Google Scholar 

  2. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nature Rev. Microbiol. 8, 317–327 (2010)

    Article  CAS  Google Scholar 

  3. Stern, A. & Sorek, R. The phage-host arms race: shaping the evolution of microbes. Bioessays 33, 43–51 (2011)

    Article  CAS  Google Scholar 

  4. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010)

    Article  ADS  CAS  Google Scholar 

  5. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Bhaya, D., Davison, M. & Barrangou, R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 45, 273–297 (2011)

    Article  CAS  Google Scholar 

  8. van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34, 401–407 (2009)

    Article  CAS  Google Scholar 

  9. Karginov, F. V. & Hannon, G. J. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell 37, 7–19 (2010)

    Article  CAS  Google Scholar 

  10. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev. Genet. 11, 181–190 (2010)

    Article  CAS  Google Scholar 

  12. Faruque, S. M. et al. Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc. Natl Acad. Sci. USA 102, 6119–6124 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Nelson, E. J., Harris, J. B., Morris, J. G., Calderwood, S. B. & Camilli, A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nature Rev. Microbiol. 7, 693–702 (2009)

    Article  CAS  Google Scholar 

  14. Seed, K. D. et al. Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh. MBio 2, e00334–10 (2011)

    Article  Google Scholar 

  15. Seed, K. D. et al. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog. 8, e1002917 (2012)

    Article  CAS  Google Scholar 

  16. Grissa, I., Vergnaud, G. & Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172 (2007)

    Article  Google Scholar 

  17. Makarova, K. S. et al. Evolution and classification of the CRISPR-Cas systems. Nature Rev. Microbiol. 9, 467–477 (2011)

    Article  CAS  Google Scholar 

  18. Longini, I. M. et al. Epidemic and endemic cholera trends over a 33-year period in Bangladesh. J. Infect. Dis. 186, 246–251 (2002)

    Article  Google Scholar 

  19. Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009)

    Article  CAS  Google Scholar 

  20. Novick, R. P., Christie, G. E. & Penadés, J. R. The phage-related chromosomal islands of Gram-positive bacteria. Nature Rev. Microbiol. 8, 541–551 (2010)

    Article  CAS  Google Scholar 

  21. Ram, G. et al. Staphylococcal pathogenicity island interference with helper phage reproduction is a paradigm of molecular parasitism. Proc. Natl Acad. Sci. USA 109, 16300–16305 (2012)

    Article  ADS  CAS  Google Scholar 

  22. Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl Acad. Sci. USA 108, 10098–10103 (2011)

    Article  ADS  CAS  Google Scholar 

  23. Datsenko, K. A. et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nature Commun. 3, 945–947 (2012)

    Article  ADS  Google Scholar 

  24. Swarts, D. C., Mosterd, C., van Passel, M. W. J. & Brouns, S. J. J. CRISPR interference directs strand specific spacer acquisition. PLoS ONE 7, e35888 (2012)

    Article  ADS  CAS  Google Scholar 

  25. Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature Genet. 38, 779–786 (2006)

    Article  Google Scholar 

  26. Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011)

    Article  CAS  Google Scholar 

  27. Garcia-Heredia, I. et al. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS ONE 7, e33802 (2012)

    Article  ADS  CAS  Google Scholar 

  28. Lazinski, D. W. L. & Camilli, A. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction. Biotechniques 54, 25–34 (2013)

    Article  CAS  Google Scholar 

  29. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004)

    Article  CAS  Google Scholar 

  30. De Souza Silva, O. & Blokesch, M. Genetic manipulation of Vibrio cholerae by combining natural transformation with FLP recombination. Plasmid 64, 186–195 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Tufts University Core Facility for sequencing and computational support. This work was supported by US National Institutes of Health grants AI055058 (A.C.), AI045746 (A.C.) and AI058935 (S.B.C.). A.C. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Contributions

K.D.S. and D.W.L. performed experiments. K.D.S., D.W.L. and A.C. designed experiments. K.D.S. and A.C. wrote the manuscript. S.B.C. provided materials. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Andrew Camilli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5 and Supplementary Tables 1-3. (PDF 4518 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seed, K., Lazinski, D., Calderwood, S. et al. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489–491 (2013). https://doi.org/10.1038/nature11927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11927

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing