Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dicalcium nitride as a two-dimensional electride with an anionic electron layer

Abstract

Recent studies suggest that electrides—ionic crystals in which electrons serve as anions—are not exceptional materials but rather a generalized form, particularly under high pressure1,2,3. The topology of the cavities confining anionic electrons determines their physical properties4. At present, reported confining sites consist only of zero-dimensional cavities or weakly linked channels4. Here we report a layered-structure electride of dicalcium nitride, Ca2N, which possesses two-dimensionally confined anionic electrons whose concentration agrees well with that for the chemical formula of [Ca2N]+·e. Two-dimensional transport characteristics are demonstrated by a high electron mobility (520 cm2 V−1 s−1) and long mean scattering time (0.6 picoseconds) with a mean free path of 0.12 micrometres. The quadratic temperature dependence of the resistivity up to 120 Kelvin indicates the presence of an electron–electron interaction. A striking anisotropic magnetoresistance behaviour with respect to the direction of magnetic field (negative for the field perpendicular to the conducting plane and positive for the field parallel to it) is observed, confirming diffusive two-dimensional transport in dense electron layers. Additionally, band calculations support confinement of anionic electrons within the interlayer space, and photoemission measurements confirm anisotropic low work functions of 3.5 and 2.6 electronvolts, revealing the loosely bound nature of the anionic electrons. We conclude that Ca2N is a two-dimensional electride in terms of [Ca2N]+·e.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and optical characterizations of Ca 2 N.
Figure 2: Electron transport properties of Ca 2 N single crystal.
Figure 3: Calculated electronic structure of Ca 2 N.
Figure 4: Determination of the work function by UPS.

Similar content being viewed by others

References

  1. Pickard, C. J. & Needs, R. J. Dense low-coordination phase of lithium. Phys. Rev. Lett. 102, 146401 (2009)

    Article  ADS  Google Scholar 

  2. Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009)

    Article  ADS  CAS  Google Scholar 

  3. Pickard, C. J. & Needs, R. J. Aluminium at terapascal pressures. Nature Mater. 9, 624–627 (2010)

    Article  ADS  CAS  Google Scholar 

  4. Dye, J. L. Electrides: early examples of quantum confinement. Acc. Chem. Res. 42, 1564–1572 (2009)

    Article  CAS  Google Scholar 

  5. Kim, S. W., Shimoyama, T. & Hosono, H. Solvated electrons in high-temperature melts and glasses of the room-temperature stable electride [Ca24Al28O64]4+·4e . Science 333, 71–74 (2011)

    Article  ADS  CAS  Google Scholar 

  6. Toda, Y. et al. Field emission of electron anions clathrated in subnanometer-sized cages of [Ca24Al28O64]4+(4e-). Adv. Mater. 16, 685–689 (2004)

    Article  CAS  Google Scholar 

  7. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982)

    Article  ADS  CAS  Google Scholar 

  8. Ohtomo, A. & Hwang, H. Y. A high mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Gregory, D. H., Bowman, A., Baker, C. F. & Weston, D. P. Dicalcium nitride, Ca2N-a 2D “excess electron” compound; synthetic routes and crystal chemistry. J. Mater. Chem. 10, 1635–1641 (2000)

    Article  CAS  Google Scholar 

  10. Reckeweg, O. & DiSalvo, F. J. Alkaline earth metal nitride compounds with the composition M2NX (M = Ca, Sr, Ba; X = □, H, Cl or Br). Solid State Sci. 4, 575–584 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Sundar, V. C. et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Kittel, C. Introduction to Solid State Physics 8th edn (John Wiley & Sons, 2005)

    MATH  Google Scholar 

  14. Kasap, S. O. Principles of Electronic Materials and Devices 2nd edn (McGraw-Hill, 2002)

    Google Scholar 

  15. Matsuishi, S. et al. Localized and delocalized electrons in room-temperature stable electride [Ca24Al28O64]4+(O2−)2-x(e)2x: analysis of optical reflectance spectra. J. Phys. Chem. C 112, 4753–4760 (2008)

    Article  CAS  Google Scholar 

  16. Fox, M. Optical Properties of Solids (Oxford Univ. Press, 2001)

    Google Scholar 

  17. Oslen, J. L. Electron Transport in Metals (Interscience, 1962)

    Google Scholar 

  18. Piraux, L. Weak localization and coulomb interaction in graphite intercalation compounds and related materials. J. Mater. Res. 5, 1285–1298 (1990)

    Article  ADS  CAS  Google Scholar 

  19. Li, Z., Yang, J., Hou, J. G. & Zhu, Q. Is mayenite without clathrated oxygen an inorganic electride? Angew. Chem. Int. Edn 43, 6479–6482 (2004)

    Article  CAS  Google Scholar 

  20. Rourke, P. M. C. & Julian, S. R. Numerical extraction of de Haas-van Alphen frequencies from calculated band energies. Comput. Phys. Commun. 183, 324–332 (2012)

    Article  ADS  CAS  Google Scholar 

  21. Steinbrenner, U., Adler, P., Hölle, W. & Simon, A. Electronic structure and chemical bonding in alkaline earth metal subnitrides: photoemission studies and band structure calculations. J. Phys. Chem. Solids 59, 1527–1536 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Demuth, J. E., Thompson, W. J., DiNardo, N. J. & Imbihl, R. Photoemission-based photovoltage probe of semiconductor surface and interface electronic structure. Phys. Rev. Lett. 56, 1408–1411 (1986)

    Article  ADS  CAS  Google Scholar 

  23. Toda, Y. et al. Work function of a room-temperature, stable electride [Ca24Al28O64]4+(e-)4 . Adv. Mater. 19, 3564–3569 (2007)

    Article  CAS  Google Scholar 

  24. Uijttewaal, M. A. de Wijs, G. A. & de Groot, R. A. Low work function of the (1000) Ca2N surface. J. Appl. Phys. 96, 1751–1753 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Tasker, P. W. The stability of ionic crystal surfaces. J. Phys. C 12, 4977–4984 (1979)

    Article  ADS  CAS  Google Scholar 

  26. Grepstad, J. K., Gartland, P. O. & Slagsvold, B. J. Anisotropic work function of clean and smooth low-index faces of aluminium. Surf. Sci. 57, 348–362 (1976)

    Article  ADS  CAS  Google Scholar 

  27. Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chem. 4, 934–940 (2012)

    Article  ADS  CAS  Google Scholar 

  28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  CAS  Google Scholar 

  29. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  30. Kresse, G. & Furthmüller, J. Efficient iterative scheme for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  CAS  Google Scholar 

  31. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. An Augmented Plane and Local Orbitals Program for Calculating Crystal Properties (ed. Schwarz, K ) (Technical University of Wien, 2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), JSPS, and the Element Strategy Initiative Project, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

H.H. conceived and S.W.K. initiated the study. K.L. and S.W.K. synthesized the samples and measured electron transport properties. Y.T. carried out the UPS measurement. S.M. performed DFT calculations. K.L., S.W.K. and H.H. co-wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hideo Hosono.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-6, Supplementary Figures 1-2, Supplementary Tables 1-3 and additional references. (PDF 384 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Kim, S., Toda, Y. et al. Dicalcium nitride as a two-dimensional electride with an anionic electron layer. Nature 494, 336–340 (2013). https://doi.org/10.1038/nature11812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11812

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing