Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of Prp8 reveals active site cavity of the spliceosome

Abstract

The active centre of the spliceosome consists of an intricate network formed by U5, U2 and U6 small nuclear RNAs, and a pre-messenger-RNA substrate. Prp8, a component of the U5 small nuclear ribonucleoprotein particle, crosslinks extensively with this RNA catalytic core. Here we present the crystal structure of yeast Prp8 (residues 885–2413) in complex with Aar2, a U5 small nuclear ribonucleoprotein particle assembly factor. The structure reveals tightly associated domains of Prp8 resembling a bacterial group II intron reverse transcriptase and a type II restriction endonuclease. Suppressors of splice-site mutations, and an intron branch-point crosslink, map to a large cavity formed by the reverse transcriptase thumb, and the endonuclease-like and RNaseH-like domains. This cavity is large enough to accommodate the catalytic core of group II intron RNA. The structure provides crucial insights into the architecture of the spliceosome active site, and reinforces the notion that nuclear pre-mRNA splicing and group II intron splicing have a common origin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the large domain in yeast Prp8 (residues 885–1824).
Figure 2: Overall structure of yeast Prp8 885–2413 in complex with Aar2.
Figure 3: Overview of the Prp8 active site cavity in an ‘open book’ view.
Figure 4: Suppressors of U4-cs1 and brr2-1 alleles mapped on the Prp8 structure.
Figure 5: Comparison between the active site of group II intron and the spliceosome (Prp8).

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the Prp8–Aar2 complex have been deposited in the Protein Data Bank under accession codes 4I43 (C2221) and 3ZEF (P212121).

References

  1. Wahl, M. C., Will, C. L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009)

    Article  CAS  Google Scholar 

  2. Wassarman, D. A. & Steitz, J. A. Interactions of small nuclear RNA’s with precursor messenger RNA during in vitro splicing. Science 257, 1918–1925 (1992)

    Article  ADS  CAS  Google Scholar 

  3. Madhani, H. D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71, 803–817 (1992)

    Article  CAS  Google Scholar 

  4. Kandels-Lewis, S. & Seraphin, B. Involvement of U6 snRNA in 5′ splice site selection. Science 262, 2035–2039 (1993)

    Article  ADS  CAS  Google Scholar 

  5. Lesser, C. F. & Guthrie, C. Mutations in U6 snRNA that alter splice site specificity: Implications for the active site. Science 262, 1982–1988 (1993)

    Article  ADS  CAS  Google Scholar 

  6. Sun, J. S. & Manley, J. L. A novel U2–U6 snRNA structure is necessary for mammalian mRNA splicing. Genes Dev. 9, 843–854 (1995)

    Article  CAS  Google Scholar 

  7. Yean, S.-L., Wuenschell, G., Termini, J. & Lin, R. J. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881–884 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Steitz, T. A. & Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Newman, A. J. & Norman, C. U5 snRNA interacts with exon sequences at 5′ and 3′ splice sites. Cell 68, 743–754 (1992)

    Article  CAS  Google Scholar 

  10. Sontheimer, E. J. & Steitz, J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science 262, 1989–1996 (1993)

    Article  ADS  CAS  Google Scholar 

  11. O'Keefe, R. T., Norman, C. & Newman, A. J. The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell 86, 679–689 (1996)

    Article  CAS  Google Scholar 

  12. Achsel, T., Ahrens, K., Brahms, H., Teigelkamp, S. & Lührmann, R. The human U5-220kD protein (hPrp8) forms a stable RNA-free complex with several U5-specific proteins, including an unwindase, a homologue of ribosomal elongation factor EF-2, and a novel WD-40 protein. Mol. Cell. Biol. 18, 6756–6766 (1998)

    Article  CAS  Google Scholar 

  13. Bartels, C., Urlaub, H., Lührmann, R. & Fabrizio, P. Mutagenesis suggests several roles of Snu114p in pre-mRNA splicing. J. Biol. Chem. 278, 28324–28334 (2003)

    Article  CAS  Google Scholar 

  14. Small, E. C., Leggett, S. R., Winans, A. A. & Staley, J. P. The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Mol. Cell 23, 389–399 (2006)

    Article  CAS  Google Scholar 

  15. Teigelkamp, S., Newman, A. J. & Beggs, J. D. Extensive interactions of PRP8 protein with the 5′ and 3′ splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. EMBO J. 14, 2602–2612 (1995)

    Article  CAS  Google Scholar 

  16. Dix, I., Russell, C. S., O’Keefe, R. T., Newman, A. J. & Beggs, J. D. Protein-RNA interactions in the U5 snRNP of Saccharomyces cerevisiae. RNA 4, 1239–1250 (1998)

    Article  CAS  Google Scholar 

  17. Vidal, V. P., Verdone, L., Mayes, A. E. & Beggs, J. D. Characterization of U6 snRNA-protein interactions. RNA 5, 1470–1481 (1999)

    Article  CAS  Google Scholar 

  18. Reyes, J. L., Gustafson, E. H., Luo, H. R., Moore, M. J. & Konarska, M. M. The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5′ splice site. RNA 5, 167–179 (1999)

    Article  CAS  Google Scholar 

  19. MacMillan, A. M. et al. Dynamic association of proteins with the pre-mRNA branch region. Genes Dev. 8, 3008–3020 (1994)

    Article  CAS  Google Scholar 

  20. Turner, I. A., Norman, C. M., Churcher, M. J. & Newman, A. J. Dissection of Prp8 protein defines multiple interactions with crucial RNA sequences in the catalytic core of the spliceosome. RNA 12, 375–386 (2006)

    Article  CAS  Google Scholar 

  21. Grainger, R. J. & Beggs, J. D. Prp8 protein: at the heart of the spliceosome. RNA 11, 533–557 (2005)

    Article  CAS  Google Scholar 

  22. Pena, V., Rozov, A., Fabrizio, P., Lührmann, R. & Wahl, M. C. Structure and function of an RNase H domain at the heart of the spliceosome. EMBO J. 27, 2929–2940 (2008)

    Article  CAS  Google Scholar 

  23. Ritchie, D. B. et al. Structural elucidation of a PRP8 core domain from the heart of the spliceosome. Nature Struct. Mol. Biol. 15, 1199–1205 (2008)

    Article  CAS  Google Scholar 

  24. Yang, K., Zhang, L., Xu, T., Heroux, A. & Zhao, R. Crystal structure of the β-finger domain of Prp8 reveals analogy to ribosomal proteins. Proc. Natl Acad. Sci. USA 105, 13817–13822 (2008)

    Article  ADS  CAS  Google Scholar 

  25. Pena, V., Liu, S., Bujnicki, J. M., Lührmann, R. & Wahl, M. C. Structure of a multipartite protein-protein interaction domain in splicing factor Prp8 and its link to Retinitis pigmentosa. Mol. Cell 25, 615–624 (2007)

    Article  CAS  Google Scholar 

  26. Zhang, L. et al. Crystal structure of the C-terminal domain of splicing factor Prp8 carrying retinitis pigmentosa mutants. Protein Sci. 16, 1024–1031 (2007)

    Article  CAS  Google Scholar 

  27. Dlakić, M. & Mushegian, A. Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. RNA 17, 799–808 (2011)

    Article  Google Scholar 

  28. Boon, K. L. et al. Prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nature Struct. Mol. Biol. 14, 1077–1083 (2007)

    Article  CAS  Google Scholar 

  29. Weber, G. et al. Mechanism for Aar2p function as a U5 snRNP assembly factor. Genes Dev. 25, 1601–1612 (2011)

    Article  CAS  Google Scholar 

  30. Joyce, C. M. & Steitz, T. A. Function and structure relationships in DNA polymerase. Annu. Rev. Biochem. 63, 777–822 (1994)

    Article  CAS  Google Scholar 

  31. Dias, A. et al. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458, 914–918 (2009)

    Article  ADS  CAS  Google Scholar 

  32. Yuan, P. et al. Crystal structure of an avian influenza polymerase PAN reveals an endonuclease active site. Nature 458, 909–913 (2009)

    Article  ADS  CAS  Google Scholar 

  33. Wyatt, J. R., Sontheimer, E. J. & Steitz, J. A. Site-specific cross-linking of mammalian U5 snRNP to the 5′ splice site before the first step of pre-mRNA splicing. Genes Dev. 6, 2542–2553 (1992)

    Article  CAS  Google Scholar 

  34. Urlaub, H., Hartmuth, K., Kostka, S., Grelle, G. & Lührmann, R. A general approach for identification of RNA-protein cross-linking sites within native human spliceosomal small nuclear ribonucleoproteins (snRNPs). J. Biol. Chem. 275, 41458–41468 (2000)

    Article  CAS  Google Scholar 

  35. Query, C. C. & Konarska, M. M. Suppression of multiple substrate mutations by spliceosomal prp8 alleles suggests functional correlations with ribosomal ambiguity mutants. Mol. Cell 14, 343–354 (2004)

    Article  CAS  Google Scholar 

  36. Umen, J. G. & Guthrie, C. Mutagenesis of the yeast gene PRP8 reveals domains governing the specificity and fidelity of 3′ splice site selection. Genetics 143, 723–739 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuhn, A. N. & Brow, D. A. Suppressors of a cold-sensitive mutation in yeast U4 RNA define five domains in the splicing factor Prp8 that influence spliceosome activation. Genetics 155, 1667–1682 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuhn, A. N., Reichl, E. M. & Brow, D. A. Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation. Proc. Natl Acad. Sci. USA 99, 9145–9149 (2002)

    Article  ADS  CAS  Google Scholar 

  39. Sharp, P. A. On the origin of RNA splicing and introns. Cell 42, 397–400 (1985)

    Article  CAS  Google Scholar 

  40. Cech, T. R. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44, 207–210 (1986)

    Article  CAS  Google Scholar 

  41. Michel, F., Umesono, K. & Ozeki, H. Comparative and functional anatomy of group II catalytic introns—a review. Gene 82, 5–30 (1989)

    Article  CAS  Google Scholar 

  42. Sharp, P. A. Five easy pieces. Science 254, 663 (1991)

    Article  ADS  CAS  Google Scholar 

  43. Lambowitz, A. M. & Zimmerly, S. Mobile group II introns. Annu. Rev. Genet. 38, 1–35 (2004)

    Article  CAS  Google Scholar 

  44. Pyle, A. M. & Lambowitz, A. M. in The RNA World 3rd edn (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F. ) 469–505 (Cold Spring Harbor Laboratory Press, 2006)

    Google Scholar 

  45. Qui, Y.-L. & Palmer, J. D. Many different origins of trans splicing in a plant mitochondrial group II intron. J. Mol. Evol. 59, 80–89 (2004)

    Google Scholar 

  46. Toor, N. et al. Tertiary architecture of the Oceanobacillus iheyensis group II intron. RNA 16, 57–69 (2010)

    Article  CAS  Google Scholar 

  47. Marcia, M. & Pyle, A. M. Visualizing group II intron catalysis through the stages of splicing. Cell 151, 497–507 (2012)

    Article  CAS  Google Scholar 

  48. Matsuura, M., Noah, J. W. & Lambowitz, A. M. Mechanism of maturase-promoted group II intron splicing. EMBO J. 20, 7259–7270 (2001)

    Article  CAS  Google Scholar 

  49. Rambo, R. P. & Doudna, J. A. Assembly of an active group II intron-maturase complex by protein dimerization. Biochemistry 43, 6486–6497 (2004)

    Article  CAS  Google Scholar 

  50. Gu, S. Q. et al. Genetic identification of potential RNA-binding regions in a group II intron-encoded reverse transcriptase. RNA 16, 732–747 (2010)

    Article  CAS  Google Scholar 

  51. Wagenbach, M. et al. Synthesis of wild type and mutant human hemoglobins in Saccharomyces cerevisiae. Biotechnology (N Y) 9, 57–61 (1991)

    CAS  Google Scholar 

  52. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H. & Hieter, P. Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122 (1992)

    Article  CAS  Google Scholar 

  53. Leslie, A. G. W. & Powell, H. R. Processing diffraction data with Mosflm. Evolv. Methods Macromol. Crystallograph. 245, 41–51 (2007)

    Article  Google Scholar 

  54. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010)

    Article  CAS  Google Scholar 

  55. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)

    Article  Google Scholar 

  56. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  57. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D 66, 22–25 (2010)

    Article  CAS  Google Scholar 

  58. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  59. Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D 66, 479–485 (2010)

    Article  CAS  Google Scholar 

  60. Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nature Protocols 3, 1171–1179 (2008)

    Article  CAS  Google Scholar 

  61. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  62. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  Google Scholar 

  63. Krissinel, E. & Henrick, K. Secondary-structure matching (PDBeFold), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D 60, 2256–2268 (2004)

    Article  CAS  Google Scholar 

  64. Holm, L. & Park, J. DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567 (2000)

    Article  CAS  Google Scholar 

  65. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001)

    Article  ADS  CAS  Google Scholar 

  66. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, 529–533 (2010)

    Article  Google Scholar 

  67. Larkin, M. A. et al. ClustalW and ClustalX version 2. Bioinformatics 23, 2947–2948 (2007)

    Article  CAS  Google Scholar 

  68. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  CAS  Google Scholar 

  69. Heinig, M. & Frishman, D. STRIDE: a Web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res. 32, W500–W502 (2004)

    Article  CAS  Google Scholar 

  70. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Murshudov for his help and guidance with crystallography; T.H.D. Nguyen, Y. Kondo, M. van Roon, J. Hardin, J. Li, C. Norman, A. Andreeva, A. Murzin and M. Yu for discussion and help; T. Ignjatovic and H. Oshikane for their contributions at the early stage of the project; L. Passmore and L. Jovine for reading of the manuscript; and M. Ikura for the gift of a calmodulin clone. We are grateful to the beamline staff at Diamond Light Source and European Synchrotron Radiation Facility for their help, and to E. Stephens and the LMB mass spectrometry facility for their help. W.P.G. thanks the Cambridge European Trust and Downing College for scholarships. This project was funded by the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

A.J.N. and K.N. initiated the project and worked on protein expression and purification for many years. Co-expression of Prp8 and Aar2 by A.J.N. was a crucial step of the project. W.P.G. successfully identified and expressed a stable large fragment of Prp8, crystallized the Prp8–Aar2 complex and solved and refined the structure almost single-handedly with practical support from K.N. and A.J.N. C.O. analysed the mercury derivative data and refined the structure of the P212121 crystal form. W.P.G. and K.N. analysed the structure and wrote the paper with important input from A.J.N. and C.O.

Corresponding authors

Correspondence to Andrew J. Newman or Kiyoshi Nagai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-18, Supplementary Tables 1-7 and Supplementary References. (PDF 3044 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galej, W., Oubridge, C., Newman, A. et al. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493, 638–643 (2013). https://doi.org/10.1038/nature11843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11843

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing