Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of small RNA pathway genes using patterns of phylogenetic conservation and divergence

Abstract

Genetic and biochemical analyses of RNA interference (RNAi) and microRNA (miRNA) pathways have revealed proteins such as Argonaute and Dicer as essential cofactors that process and present small RNAs to their targets. Well-validated small RNA pathway cofactors such as these show distinctive patterns of conservation or divergence in particular animal, plant, fungal and protist species. We compared 86 divergent eukaryotic genome sequences to discern sets of proteins that show similar phylogenetic profiles with known small RNA cofactors. A large set of additional candidate small RNA cofactors have emerged from functional genomic screens for defects in miRNA- or short interfering RNA (siRNA)-mediated repression in Caenorhabditis elegans and Drosophila melanogaster1,2, and from proteomic analyses of proteins co-purifying with validated small RNA pathway proteins3,4. The phylogenetic profiles of many of these candidate small RNA pathway proteins are similar to those of known small RNA cofactor proteins. We used a Bayesian approach to integrate the phylogenetic profile analysis with predictions from diverse transcriptional coregulation and proteome interaction data sets to assign a probability for each protein for a role in a small RNA pathway. Testing high-confidence candidates from this analysis for defects in RNAi silencing, we found that about one-half of the predicted small RNA cofactors are required for RNAi silencing. Many of the newly identified small RNA pathway proteins are orthologues of proteins implicated in RNA splicing. In support of a deep connection between the mechanism of RNA splicing and small-RNA-mediated gene silencing, the presence of the Argonaute proteins and other small RNA components in the many species analysed strongly correlates with the number of introns in those species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic profiling analysis shows correlated conservation patterns of C. elegans proteins.
Figure 2: Phylogenetic clusters of candidate small RNA pathway proteins.
Figure 3: Select phylogenetic clusters enriched with hits from proteomic and functional genomic small RNA screens.
Figure 4: Inactivation of genes implicated in RNAi pathways re-animates transgenes that are silenced by RNAi.

Similar content being viewed by others

References

  1. Kim, J. K. et al. Functional genomic analysis of RNA interference in C. elegans. Science 308, 1164–1167 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Zhou, R. et al. Comparative analysis of argonaute-dependent small RNA pathways in Drosophila. Mol. Cell 32, 592–599 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Duchaine, T. F. et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124, 343–354 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D. & Yeates, T. O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl Acad. Sci. USA 96, 4285–4288 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gabaldón, T. Evolution of proteins and proteomes: a phylogenetics approach. Evol. Bioinform. Online 1, 51–61 (2005)

    Article  Google Scholar 

  7. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Avidor-Reiss, T. et al. Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527–539 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Enault, F., Suhre, K., Abergel, C., Poirot, O. & Claverie, J. M. Annotation of bacterial genomes using improved phylogenomic profiles. Bioinformatics 19 (Suppl. 1). i105–i107 (2003)

    Article  PubMed  Google Scholar 

  10. Drinnenberg, I. A. et al. RNAi in budding yeast. Science 326, 544–550 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Drinnenberg, I. A., Fink, G. R. & Bartel, D. P. Compatibility with killer explains the rise of RNAi-deficient fungi. Science 333, 1592 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yelina, N. E. et al. Putative Arabidopsis THO/TREX mRNA export complex is involved in transgene and endogenous siRNA biosynthesis. Proc. Natl Acad. Sci. USA 107, 13948–13953 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ketting, R. F. & Plasterk, R. H. A genetic link between co-suppression and RNA interference in C. elegans. Nature 404, 296–298 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Simmer, F. et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12, 1317–1319 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. Cui, M., Kim, E. B. & Han, M. Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans. PLoS Genet. 2, e74 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Parry, D. H., Xu, J. & Ruvkun, G. A whole-genome RNAi Screen for C. elegans miRNA pathway genes. Curr. Biol. 17, 2013–2022 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thivierge, C. et al. Tudor domain ERI-5 tethers an RNA-dependent RNA polymerase to DCR-1 to potentiate endo-RNAi. Nature Struct. Mol. Biol. 19, 90–97 (2012)

    Article  CAS  Google Scholar 

  18. Zhang, L. et al. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol. Cell 28, 598–613 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Calvo, S. et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nature Genet. 38, 576–582 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Jansen, R. et al. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Hibbs, M. A. et al. Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics 23, 2692–2699 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Simonis, N. et al. Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nature Methods 6, 47–54 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Montgomery, T. A. et al. PIWI associated siRNAs and piRNAs specifically require the Caenorhabditis elegans HEN1 ortholog henn-1. PLoS Genet. 8, e1002616 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bayne, E. H. et al. Splicing factors facilitate RNAi-directed silencing in fission yeast. Science 322, 602–606 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pontes, O. & Pikaard, C. S. siRNA and miRNA processing: new functions for Cajal bodies. Curr. Opin. Genet. Dev. 18, 197–203 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aravind, L., Watanabe, H., Lipman, D. J. & Koonin, E. V. Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc. Natl Acad. Sci. USA 97, 11319–11324 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernstein, D. A. et al. Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation. Proc. Natl Acad. Sci. USA 109, 523–528 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Guang, S. et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science 321, 537–541 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Duchaine for access to his ERI-1 proteomic data before it was published and to S. Fischer, C. Zhang and T. Montgomery for helpful discussions. The work was supported by NIH GM088565 and the Pew Charitable Trusts (J.K.K.) and NIH GM44619 and GM098647 (G.R.).

Author information

Authors and Affiliations

Authors

Contributions

Y.T., J.K.K. and G.R. designed experiments; Y.T. developed analytical tools and analysed data; and Y.T., A.C.B., G.D.H., M.A.N., S.M.G., H.G., R.K. and J.K.K. designed and carried out experiments. O.Z. gave statistical support and conceptual advice. Y.T., K.Y, B.C. and M.B. wrote code. Y.T., A.C.B., J.K.K. and G.R. wrote the paper. G.R. and J.K.K. supervised the project.

Corresponding author

Correspondence to Gary Ruvkun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-7, legends for Supplementary Tables 1-2 and 5-7 (see separate excel files for these Supplementary Tables), Supplementary Tables 3, 4 and 8, Supplementary Methods and Supplementary References. (PDF 4426 kb)

Supplementary Data

This file contains Supplementary Table 1 – see Supplementary Information for full legend. (XLSX 7273 kb)

Supplementary Data

This file contains Supplementary Table 2 - see Supplementary Information for full legend. (XLSX 21334 kb)

Supplementary Data

This file contains Supplementary Table 5 - see Supplementary Information for full legend. (XLSX 132 kb)

Supplementary Data

This file contains Supplementary Table 6 - see Supplementary Information for full legend. (XLSX 159 kb)

Supplementary Data

This file contains Supplementary Table 7 - see Supplementary Information for full legend. (XLSX 49 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabach, Y., Billi, A., Hayes, G. et al. Identification of small RNA pathway genes using patterns of phylogenetic conservation and divergence. Nature 493, 694–698 (2013). https://doi.org/10.1038/nature11779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11779

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing