Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes

Abstract

Chromatin-remodelling complexes (CRCs) mobilize nucleosomes to mediate the access of DNA-binding factors to their sites in vivo. These CRCs contain a catalytic subunit that bears an ATPase/DNA-translocase domain and flanking regions that bind nucleosomal epitopes1. A central question is whether and how these flanking regions regulate ATP hydrolysis or the coupling of hydrolysis to DNA translocation, to affect nucleosome-sliding efficiency. ISWI-family CRCs contain the protein ISWI2, which uses its ATPase/DNA-translocase domain to pump DNA around the histone octamer to enable sliding3,4,5,6,7. ISWI is positively regulated by two ‘activating’ nucleosomal epitopes: the ‘basic patch’ on the histone H4 tail, and extranucleosomal (linker) DNA8,9,10,11,12,13. Previous work defined the HAND-SANT-SLIDE (HSS) domain at the ISWI carboxy terminus that binds linker DNA, needed for ISWI activity14,15. Here we define two new, conserved and separate regulatory regions on Drosophila ISWI, termed AutoN and NegC, which negatively regulate ATP hydrolysis (AutoN) or the coupling of ATP hydrolysis to productive DNA translocation (NegC). The two aforementioned nucleosomal epitopes promote remodelling indirectly by preventing the negative regulation of AutoN and NegC. Notably, mutation or removal of AutoN and NegC enables marked nucleosome sliding without the H4 basic patch or extranucleosomal DNA, or the HSS domain, conferring on ISWI the biochemical attributes normally associated with SWI/SNF-family ATPases. Thus, the ISWI ATPase catalytic core is an intrinsically active DNA translocase that conducts nucleosome sliding, onto which selective ‘inhibition-of-inhibition’ modules are placed, to help ensure that remodelling occurs only in the presence of proper nucleosomal epitopes. This supports a general concept for the specialization of chromatin-remodelling ATPases, in which specific regulatory modules adapt an ancient active DNA translocase to conduct particular tasks only on the appropriate chromatin landscape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AutoN resembles the histone H4 tail basic patch and restricts ISWI ATPase activity.
Figure 2: AutoN mutation (ISWI(2RA)) increases DNA translocation and nucleosome sliding.
Figure 3: NegC inhibits the coupling of ATP hydrolysis to DNA translocation, and nucleosome sliding.
Figure 4: Expression of ISWI derivatives in vivo , and regulation model for ISWI.

Similar content being viewed by others

References

  1. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009)

    Article  CAS  Google Scholar 

  2. Corona, D. F. & Tamkun, J. W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113–119 (2004)

    Article  CAS  Google Scholar 

  3. Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 16, 2120–2134 (2002)

    Article  CAS  Google Scholar 

  4. Whitehouse, I., Stockdale, C., Flaus, A., Szczelkun, M. D. & Owen-Hughes, T. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol. 23, 1935–1945 (2003)

    Article  CAS  Google Scholar 

  5. Zofall, M., Persinger, J., Kassabov, S. R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nature Struct. Mol. Biol. 13, 339–346 (2006)

    Article  CAS  Google Scholar 

  6. Strohner, R. et al. A ‘loop recapture’ mechanism for ACF-dependent nucleosome remodeling. Nature Struct. Mol. Biol. 12, 683–690 (2005)

    Article  CAS  Google Scholar 

  7. Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nature Struct. Mol. Biol. 12, 747–755 (2005)

    Article  CAS  Google Scholar 

  8. Clapier, C. R., Langst, G., Corona, D. F., Becker, P. B. & Nightingale, K. P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001)

    Article  CAS  Google Scholar 

  9. Hamiche, A., Kang, J. G., Dennis, C., Xiao, H. & Wu, C. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc. Natl Acad. Sci. USA 98, 14316–14321 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Clapier, C. R., Nightingale, K. P. & Becker, P. B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res. 30, 649–655 (2002)

    Article  CAS  Google Scholar 

  11. Dang, W., Kagalwala, M. N. & Bartholomew, B. Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA. Mol. Cell. Biol. 26, 7388–7396 (2006)

    Article  CAS  Google Scholar 

  12. Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941 (2004)

    Article  CAS  Google Scholar 

  13. Fazzio, T. G., Gelbart, M. E. & Tsukiyama, T. Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo. Mol. Cell. Biol. 25, 9165–9174 (2005)

    Article  CAS  Google Scholar 

  14. Grüne, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449–460 (2003)

    Article  Google Scholar 

  15. Yamada, K. et al. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472, 448–453 (2011)

    Article  ADS  CAS  Google Scholar 

  16. Flaus, A., Martin, D. M., Barton, G. J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006)

    Article  CAS  Google Scholar 

  17. Fitzgerald, D. J. et al. Reaction cycle of the yeast Isw2 chromatin remodeling complex. EMBO J. 23, 3836–3843 (2004)

    Article  CAS  Google Scholar 

  18. Lorch, Y., Maier-Davis, B. & Kornberg, R. D. Mechanism of chromatin remodeling. Proc. Natl Acad. Sci. USA 107, 3458–3462 (2010)

    Article  ADS  CAS  Google Scholar 

  19. Fyodorov, D. V. & Kadonaga, J. T. Dynamics of ATP-dependent chromatin assembly by ACF. Nature 418, 896–900 (2002)

    Article  ADS  Google Scholar 

  20. Sirinakis, G. et al. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J. 30, 2364–2372 (2011)

    Article  CAS  Google Scholar 

  21. Blosser, T. R., Yang, J. G., Stone, M. D., Narlikar, G. J. & Zhuang, X. Dynamics of nucleosome remodelling by individual ACF complexes. Nature 462, 1022–1027 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Singleton, M. R., Dillingham, M. S. & Wigley, D. B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007)

    Article  CAS  Google Scholar 

  23. Patel, A., McKnight, J. N., Genzor, P. & Bowman, G. D. Identification of residues in chromodomain helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding. J. Biol. Chem. 286, 43984–43993 (2011)

    Article  CAS  Google Scholar 

  24. Ryan, D. P., Sundaramoorthy, R., Martin, D., Singh, V. & Owen-Hughes, T. The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J. 30, 2596–2609 (2011)

    Article  CAS  Google Scholar 

  25. Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363–371 (2009)

    Article  CAS  Google Scholar 

  26. Forné, I., Ludwigsen, J., Imhof, A., Becker, P. B. & Mueller-Planitz, F. Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. Mol. Cell. Proteom. 11, M111.012088 (2012)

    Article  Google Scholar 

  27. Hauk, G., McKnight, J. N., Nodelman, I. M. & Bowman, G. D. The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol. Cell 39, 711–723 (2010)

    Article  CAS  Google Scholar 

  28. Sen, P., Ghosh, S., Pugh, B. F. & Bartholomew, B. A new, highly conserved domain in Swi2/Snf2 is required for SWI/SNF remodeling. Nucleic Acids Res. 39, 9155–9166 (2011)

    Article  CAS  Google Scholar 

  29. Wilson, B., Erdjument-Bromage, H., Tempst, P. & Cairns, B. R. The RSC chromatin remodeling complex bears an essential fungal-specific protein module with broad functional roles. Genetics 172, 795–809 (2006)

  30. Schrodinger, L. L. C. The PyMOL Molecular Graphics System, Version 0.99rc6 (2010)

    Google Scholar 

  31. Dyer, P. N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375, 23–44 (2004)

    Article  CAS  Google Scholar 

  32. Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998)

    Article  CAS  Google Scholar 

  33. Tsukiyama, T., Palmer, J., Landel, C. C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev. 13, 686–697 (1999)

    Article  CAS  Google Scholar 

  34. Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758–1760 (2011)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Tan for pST55-16 × NCP601a and G. Längst for pUC12 × 601. We thank C. Müller for experience gained by C. Clapier on structural aspects of ISWI protein. We thank T. Owen-Hughes for the S. cerevisiae strain TOH1358, T. Tsukiyama for the initial ISW1-containing plasmid, P. Gawu for technical assistance and B. Schackmann for DNA sequencing and peptide synthesis. This work was supported by National Institutes of Health grant GM60415 (supplies), Howard Hughes Medical Institute (support of C.R.C. and B.R.C.), and CA042014 (University of Utah core facilities).

Author information

Authors and Affiliations

Authors

Contributions

B.R.C. and C.R.C.: experimental design. C.R.C.: experiments and figures. B.R.C. and C.R.C. wrote the paper.

Corresponding authors

Correspondence to Cedric R. Clapier or Bradley R. Cairns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-5. (PDF 1687 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clapier, C., Cairns, B. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492, 280–284 (2012). https://doi.org/10.1038/nature11625

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11625

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing