Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deep penetration of molten iron into the mantle caused by a morphological instability

Abstract

The core–mantle boundary of Earth is a region where iron-rich liquids interact with oxides and silicates in the mantle1. Iron enrichment may occur at the bottom of the mantle, leading to low seismic-wave velocities and high electrical conductivity2,3,4,5, but plausible physical processes of iron enrichment have not been suggested. Diffusion-controlled iron enrichment is inefficient because it is too slow6, although the diffusion can be fast enough along grain boundaries for some elements7. More fundamentally, experimental studies and geophysical observations show that the core is under-saturated with oxygen, implying that the mantle next to the core should be depleted in FeO. Here we show that (Mg,Fe)O in contact with iron-rich liquids leads to a morphological instability, causing blobs of iron-rich liquid to penetrate the oxide. This morphological instability is generated by the chemical potential gradient between two materials when they are not in bulk chemical equilibrium, and should be a common process in Earth’s interior. Iron-rich melt could be transported 50 to 100 kilometres away from the core–mantle boundary by this mechanism, providing an explanation for the iron-rich regions in the mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of Mg and Fe in the annealed couples of molten Fe and solid (Mg,Fe)O.
Figure 2: Instability wavelength λ plotted against thickness of chemical boundary layer L.
Figure 3: Effective diffusivity D MRL corresponding to the migration of iron-rich liquid blobs compared with the Fe–Mg interdiffusion coefficient in (Mg,Fe)O.
Figure 4: Influence of liquid iron blobs on geophysically observable properties.

Similar content being viewed by others

References

  1. Lay, T., Williams, Q. & Garnero, E. J. The core–mantle boundary layer and deep Earth dynamics. Nature 392, 461–468 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Garnero, E. J. A new paradigm for Earth's core-mantle boundary. Science 304, 834–836 (2004)

    Article  CAS  Google Scholar 

  3. Trampert, J., Deschamps, F., Resovsky, J. S. & Yuen, D. A. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306, 853–856 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Ishii, M. & Tromp, J. Normal mode and free-air gravity constraints on lateral variation in density of Earth’s mantle. Science 285, 1231–1236 (1999)

    Article  CAS  Google Scholar 

  5. Nagao, H., Iyemori, T., Higuchi, T. & Araki, T. Lower mantle conductivity anomalies estimated from geomagnetic jerks. J. Geophys. Res. 108, 2254 (2003)

    Article  ADS  Google Scholar 

  6. Stevenson, D. J. Models of the Earth’s core. Science 214, 611–619 (1981)

    Article  ADS  CAS  Google Scholar 

  7. Hayden, L. A. & Watson, E. B. A diffusion mechanism for core–mantle interaction. Nature 450, 709–711 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. M. in Earth's Deep Interior (eds Karato, S. et al.) 63–87 (American Geophysical Union, 2000)

    Google Scholar 

  9. Holme, R. Electromagnetic core-mantle coupling. I. Explaining decadal changes in the length of day. Geophys. J. Int. 132, 176–180 (1998)

    ADS  Google Scholar 

  10. Buffett, B. A. Constraints on magnetic energy and mantle conductivity from the forced nutations of the Earth. J. Geophys. Res. 97, 19581–19597 (1992)

    Article  ADS  Google Scholar 

  11. Ohta, K. et al. Electrical conductivities of pyrolitic mantle and MORB materials up to the lowermost mantle conditions. Earth Planet. Sci. Lett. 289, 497–502 (2010)

    Article  ADS  CAS  Google Scholar 

  12. Poirier, J.-P. & LeMouel, J.-L. Does infiltration of core material into the lower mantle affect the observed geomagnetic field? Phys. Earth Planet. Inter. 73, 29–37 (1992)

    Article  ADS  Google Scholar 

  13. Kanda, R. V. S. & Stevenson, D. J. Suction mechanism for iron entrainment into the lower mantle. Geophys. Res. Lett. 33, L02310 (2006)

    Article  ADS  Google Scholar 

  14. Nakada, M. & Karato, S. Low viscosity of the bottom of the Earth’s mantle inferred from the analysis of Chandler wobble and tidal deformation. Phys. Earth Planet. Inter. 192/193, 68–80 (2012)

    Article  ADS  Google Scholar 

  15. Van Orman, J. A., Fei, Y., Hauri, E. H. & Wang, J. Diffusion in MgO at high pressure: constraints on deformation mechanisms and chemical transport at the core-mantle boundary. Geophys. Res. Lett. 30 10.1029/2002GL016343 (2003)

  16. Mullins, W. W. & Sekerka, R. F. Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444–451 (1964)

    Article  ADS  Google Scholar 

  17. Holzapfel, C., Rubie, D. C., Frost, D. J. & Langenhorst, F. Fe-Mg interdiffusion in (Mg,Fe)SiO3 perovskite and lower mantle. Science 309, 1707–1710 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Yamazaki, D. & Irifune, T. Fe-Mg interdiffusion in magnesiowüstite up to 35 GPa. Earth Planet. Sci. Lett. 216, 301–311 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Anderson, O. L. & Isaak, D. G. Another look at the core density deficit of Earth’s outer core. Phys. Earth Planet. Inter. 131, 19–27 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Frost, D. J. et al. Partitioning of oxygen between the Earth’s mantle and core. J. Geophys. Res. 115 10.1029/2009JB006302 (2010)

  21. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  22. Boehler, R. Temperatures in the Earth’s core from melting point measurements of iron at high static pressures. Nature 363, 534–536 (1993)

    Article  ADS  CAS  Google Scholar 

  23. Brandon, A. & Walker, R. J. The debate over core-mantle interaction. Earth Planet. Sci. Lett. 232, 211–225 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Sleep, N. H. Gradual entrainment of a chemical layer at the base of the mantle by overlying convection. Geophys. J. R. Astron. Soc. 95, 437–447 (1988)

    Article  Google Scholar 

  25. Leighton, D. & Acrivos, A. The shear-induced migration of particles concentrated suspensions. J. Fluid Mech. 181, 415–439 (1987)

    Article  ADS  CAS  Google Scholar 

  26. Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 450, 866–869 (2007)

    Article  ADS  CAS  Google Scholar 

  27. McNamara, A. K., Garnero, E. & Rost, S. Tracking deep mantle reservoirs with ultra-low velocity zones. Earth Planet. Sci. Lett. 299, 1–9 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor and Francis, 1992)

    MATH  Google Scholar 

  29. Smith, D. E. et al. Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214–217 (2012)

    Article  ADS  CAS  Google Scholar 

  30. Shannon, M. C. & Agee, C. B. Percolation of core melts at lower mantle conditions. Science 280, 1059–1061 (1998)

    Article  ADS  CAS  Google Scholar 

  31. Otsuka, K., McCammon, C. & Karato, S. Tetrahedral occupancy of ferric iron in (Mg,Fe)O: implications for point defects in the Earth’s lower mantle. Phys. Earth Planet. Inter. 180, 179–188 (2010)

    Article  ADS  CAS  Google Scholar 

  32. Otsuka, K. & Karato, S. Control of the water fugacity at high pressures and temperatures: applications to the incorporation mechanisms of water in olivine. Phys. Earth Planet. Inter. 189, 27–33 (2011)

    Article  ADS  CAS  Google Scholar 

  33. Ringwood, A. E. & Hibberson, W. The system Fe-FeO revisited. Phys. Chem. Miner. 17, 313–319 (1990)

    Article  ADS  CAS  Google Scholar 

  34. Seagle, C. T., Heinz, D. L., Campbell, A. J., Prakapenka, V. B. & Wanless, S. T. Melting and thermal expansion in the Fe-FeO system at high pressure. Earth Planet. Sci. Lett. 265, 655–665 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Z. Du, T. Hiraga, T. Kawazoe, K. Tsuno and T. Yoshino for discussions and J. Eckert, G. Amulele, Z. Du, D. Wang and R. Farla for technical support. We thank M. Zuber, J. Schubert and S. Peale for a discussion on Mercury. B. Buffett provided a useful comment on the magnetic coupling between the core and the mantle. B. Watson provided constructive criticism. This research was financially supported by the National Science Foundation under grant number EAR-0809330.

Author information

Authors and Affiliations

Authors

Contributions

Experimental studies were conducted by K.O. Theoretical interpretation and geophysical applications were done by both K.O. and S.K. Both authors wrote the paper.

Corresponding author

Correspondence to Shun-ichiro Karato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-4, Supplementary Table 1 and Supplementary References. (PDF 3140 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otsuka, K., Karato, Si. Deep penetration of molten iron into the mantle caused by a morphological instability. Nature 492, 243–246 (2012). https://doi.org/10.1038/nature11663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11663

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing