Continuous gas-phase synthesis of nanowires with tunable properties

Journal name:
Date published:
Published online

Semiconductor nanowires are key building blocks for the next generation of light-emitting diodes1, solar cells2 and batteries3. To fabricate functional nanowire-based devices on an industrial scale requires an efficient methodology that enables the mass production of nanowires with perfect crystallinity, reproducible and controlled dimensions and material composition, and low cost. So far there have been no reports of reliable methods that can satisfy all of these requirements. Here we show how aerotaxy, an aerosol-based growth method4, can be used to grow nanowires continuously with controlled nanoscale dimensions, a high degree of crystallinity and at a remarkable growth rate. In our aerotaxy approach, catalytic size-selected Au aerosol particles induce nucleation and growth of GaAs nanowires with a growth rate of about 1micrometre per second, which is 20 to 1,000 times higher than previously reported for traditional, substrate-based growth of nanowires made of group III–V materials5, 6, 7. We demonstrate that the method allows sensitive and reproducible control of the nanowire dimensions and shape—and, thus, controlled optical and electronic properties—through the variation of growth temperature, time and Au particle size. Photoluminescence measurements reveal that even as-grown nanowires have good optical properties and excellent spectral uniformity. Detailed transmission electron microscopy investigations show that our aerotaxy-grown nanowires form along one of the four equivalent left fence111right fenceB crystallographic directions in the zincblende unit cell, which is also the preferred growth direction for III–V nanowires seeded by Au particles on a single-crystal substrate. The reported continuous and potentially high-throughput method can be expected substantially to reduce the cost of producing high-quality nanowires and may enable the low-cost fabrication of nanowire-based devices on an industrial scale.

At a glance


  1. Aerotaxy growth of nanowires.
    Figure 1: Aerotaxy growth of nanowires.

    a, Au agglomerate formation; b, Au agglomerate size sorting using a DMA; c, Au agglomerate compaction into spherical particles in a furnace; d, nanowire growth; e, nanowire deposition.

  2. Scanning electron microscope images of GaAs nanowires grown by aerotaxy under different growth conditions.
    Figure 2: Scanning electron microscope images of GaAs nanowires grown by aerotaxy under different growth conditions.

    ad, Nanowires grown with 35- (a), 50- (b), 70- (c) and 120-nm (d) diameter Au agglomerates at a furnace temperature of 525°C. After particle compaction and nanowire growth, this results in average nanowire-top diameters (where the nanowire meets the Au particle) of 30, 41, 51 and 66nm, respectively. eh, Nanowires grown at furnace temperatures of 450 (e), 500 (f), 550 (g) and 600°C (h), using 50-nm Au agglomerates and a growth time of 1s. i, Temperature dependence of the nanowire length (errors, s.d. of measured nanowire length). Each measurement point contains between four and ten nanowire measurements (Supplementary Information) j, k, Nanowires grown with reactor tube diameters of 18 (j) and 32mm (k), resulting in growth times of approximately 0.3 and 1s, respectively. In each series of images, only the growth parameter specified was varied.

  3. Temperature dependence of the nanowire crystal structure.
    Figure 3: Temperature dependence of the nanowire crystal structure.

    Transmission electron microscope images of nanowires grown at temperatures of 450 (a), 500 (b), 550 (c) and 600°C (d). The nanowires were grown with 50-nm Au agglomerates and a growth time of 1s. The nanowires are viewed along a left fence110right fence direction perpendicular to the growth direction.

  4. Photoluminescence spectra.
    Figure 4: Photoluminescence spectra.

    Nanowire microphotoluminescence measurements performed on a single nanowire and on a three-nanowire ensemble at 4K. Nanowires were grown from 50-nm Au agglomerates at a growth temperature of 625°C and a growth time of approximately 0.3s. a.u. arbitrary units.


  1. Qian, F., Gradečak, S., Li, Y., Wen, C.-Y. & Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 22872291 (2005)
  2. Borgström, M. T. et al. Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quantum Electron. 17, 10501061 (2011)
  3. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol 3, 3135 (2008)
  4. Deppert, K. & Samuelson, L. Self-limiting transformation of monodisperse Ga droplets into GaAs nanocrystals. Appl. Phys. Lett. 68, 14091411 (1996)
  5. Joyce, H. J. et al. Unexpected benefits of rapid growth rate for III−V nanowires. Nano Lett. 9, 695701 (2009)
  6. Borgström, M. T., Immink, G., Ketelaars, B., Algra, R. & Bakkers, E. P. A. M. Synergetic nanowire growth. Nature Nanotechnol. 2, 541544 (2007)
  7. Ramdani, M. R. et al. Fast growth synthesis of GaAs nanowires with exceptional length. Nano Lett. 10, 18361841 (2010)
  8. Yazawa, M., Koguchi, M., Muto, A., Ozawa, M. & Hiruma, K. Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers. Appl. Phys. Lett. 61, 20512053 (1992)
  9. Haraguchi, K., Katsuyama, T. & Hiruma, K. Polarization dependence of light emitted from GaAs p-n junctions in quantum wire crystals. J. Appl. Phys. 75, 42204225 (1994)
  10. Björk, M. T. et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 8789 (2002)
  11. Holmes, J. D., Johnston, K. P., Doty, R. C. & Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 14711473 (2000)
  12. Wang, F. et al. Solution−liquid−solid growth of semiconductor nanowires. Inorg. Chem. 45, 75117521 (2006)
  13. Duan, X. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298302 (2000)
  14. Karlsson, L., Deppert, K. & Malm, J.-O. Size determination of Au aerosol nanoparticles by off-line TEM/STEM observations. J. Nanopart. Res. 8, 971980 (2006)
  15. Gudiksen, M. S., Wang, J. & Lieber, C. M. Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B 106, 40364039 (2002)
  16. Ford, A. C. et al. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 9, 360365 (2009)
  17. Magnusson, M. H., Deppert, K., Malm, J.-O., Bovin, J.-O. & Samuelson, L. Size-selected gold nanoparticles by aerosol technology. Nanostruct. Mater. 12, 4548 (1999)
  18. Kim, S. H. & Zachariah, M. R. Gas-phase growth of diameter-controlled carbon nanotubes. Mater. Lett. 61, 20792083 (2007)
  19. Wacaser, B. A. et al. Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires. Adv. Mater. 21, 153165 (2009)
  20. Soci, C., Bao, X.-Y., Aplin, D. P. R. & Wang, D. A systematic study on the growth of GaAs nanowires by metal−organic chemical vapor deposition. Nano Lett. 8, 42754282 (2008)
  21. Borgström, M., Deppert, K., Samuelson, L. & Seifert, W. Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: a growth study. J. Cryst. Growth 260, 1822 (2004)
  22. Caroff, P., Bolinsson, J. & Johansson, J. Crystal phases in III–V nanowires: from random toward engineered polytypism. IEEE J. Sel. Top. Quantum Electron. 17, 829846 (2011)
  23. Bogardus, E. H. & Bebb, H. B. Bound-exciton, free-exciton, band-acceptor, donor-acceptor, and auger recombination in GaAs. Phys. Rev. 176, 9931002 (1968)
  24. Morral, A. F. Gold-free GaAs nanowire synthesis and optical properties. IEEE J. Sel. Top. Quantum Electron. 17, 819828 (2011)
  25. Heiss, M. et al. Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures. Phys. Rev. B 83, 045303 (2011)
  26. Dong, A., Yu, H., Wang, F. & Buhro, W. E. Colloidal GaAs quantum wires: solution−liquid−solid synthesis and quantum-confinement studies. J. Am. Chem. Soc. 130, 59545961 (2008)
  27. Duan, X., Wang, J. & Lieber, C. M. Synthesis and optical properties of gallium arsenide nanowires. Appl. Phys. Lett. 76, 11161118 (2000)
  28. Moewe, M., Chuang, L. C., Crankshaw, S., Chase, C. & Chang-Hasnain, C. Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon. Appl. Phys. Lett. 93, 023116 (2008)
  29. Freer, E. M., Grachev, O., Duan, X., Martin, S. & Stumbo, D. P. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nature Nanotechnol. 5, 525530 (2010)
  30. Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630633 (2001)
  31. Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 10431053 (2007)
  32. Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168171 (2008)
  33. Taftø, J. & Spence, J. C. H. A simple method for the determination of structure-factor phase relationships and crystal polarity using electron diffraction. J. Appl. Crystallogr. 15, 6064 (1982)

Download references

Author information


  1. Division of Solid State Physics, Lund University, 22100 Lund, Sweden

    • Magnus Heurlin,
    • David Lindgren,
    • Knut Deppert &
    • Lars Samuelson
  2. Sol Voltaics AB, Ideon Science Park, 22370 Lund, Sweden

    • Martin H. Magnusson
  3. Division of Polymer and Materials Chemistry, Lund University, 22100 Lund, Sweden

    • Martin Ek &
    • L. Reine Wallenberg


M.H., M.H.M., K.D. and L.S. designed the growth experiments. M.H. and M.H.M. performed the growth experiments. M.H., M.H.M., D.L. and M.E. performed the characterization and data analysis. K.D., L.R.W. and L.S. supervised the project. M.H. and L.S. wrote the main part of the paper. All authors reviewed and commented on the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (1.3M)

    This file contains Supplementary Text and Data, Supplementary Table 1 and Supplementary Figures 1-7.

Additional data